Устройство относится к нефтяной промышленности и может быть использовано при добыче и транспортировке тяжелых нефтей и нефтепродуктов.
Уровень техники
Известны три основных способа снижения вязкости нефтепродуктов: нагрев, применение растворителей и ультразвуковая обработка. Нагрев требует высоких энергозатрат, применение растворителей предполагает высокий расход различных химических веществ и затрат на экологическую безопасность, а ультразвуковая обработка является недостаточно эффективной и требует усовершенствования.
Известно устройство для снижения вязкости тяжелых нефтей (US №6,279,653, МПК Е21В 28/00, опубликовано 28.08.2001) [1]. В скважину добавляется водный раствор щелочи, который смешивается и реагирует с сырой тяжелой нефтью. Затем ультразвуковые волны возбуждаются в смеси для формирования эмульсии. Конструктивным недостатком устройства является сложность технической реализации, обусловленная необходимостью последующего разделения нефти и химических реагентов.
Известно устройство для интенсификации добычи вязких нефтей (US №7,059,413, МПК Е21В 43/24, опубликовано 13.06.2006) [2]. Устройство использует ультразвуковые волны высокой эффективности в донной части скважины для нагрева и снижения вязкости нефти без использования реагентов и насосов. Устройство содержит ультразвуковой генератор, расположенный на поверхности, и ультразвуковой магнитострикционный излучатель, размещенный на конце буровой трубы в скважине. Недостатком устройства является сложность технической реализации и энергоемкость. Кроме того, устройство не решает проблем дальнейшей транспортировки нефти.
Известно устройство для ультразвуковой обработки жидкостей (RU №2228912, МПК C02F 1/36, опубликовано 10.09.2002) [3], в котором в качестве источника ультразвука применяется механическое звуковое устройство, принцип действия которого основан на прерывании струй жидкости, резонансные эффекты, обусловленные геометрическими размерами устройства, не используются.
Известен способ обработки парафинистой нефти (RU №2549383, МПК C10G 15/08, опубликовано 09.01.2013) [4], заключающийся в комбинации ультразвукового и магнитного воздействий на парафинистую нефть, в котором ультразвуковое воздействие осуществляется с использованием бегущих ультразвуковых волн. Недостатком способа является низкая эффективность и сложность технической реализации исполнительного устройства.
Наиболее близким по большинству совпадающих признаков и по достигаемому результату к настоящему изобретению является устройство для снижения вязкости нефти и нефтепродуктов при помощи комплексного воздействия микроволновой энергии и ультразвукового излучения (RU №2382933, МПК F17D 1/16, опубликовано 28.10.2008) [5], принимаемое за прототип, которое содержит микроволновую и ультразвуковую секции, образующие единый модуль обработки. Устройство обеспечивает комплексное воздействие двух факторов: микроволнового излучения и ультразвукового воздействия. Микроволновое излучение нагревает нефть и снижает вероятность слипания асфальтеновых ядер в крупные агрегаты, и, как следствие, уменьшается вязкость. Кавитационные эффекты, возникающие при воздействии ультразвука на нефть, препятствуют объединению поляризованных ассоциатов в крупные структуры, диспергируя их на более мелкие группы молекул. Данное устройство характеризуется сложностью исполнения и энергозатратностью, так как при организации ультразвукового воздействия резонансные эффекты, обусловленные геометрическими размерами устройства, не используются. В качестве источников ультразвуковых колебаний использованы магнитострикционные преобразователи, массогабаритные характеристики которых уступают аналогичным характеристикам пьезопреобразователей.
Раскрытие изобретения
Техническим результатом изобретения является повышение эффективности процесса добычи и перекачивания тяжелых нефтей и нефтепродуктов за счет снижения их вязкости в результате одновременного кавитационного и теплового воздействия ультразвуковых стоячих волн высокой интенсивности без увеличения общего энергопотребления.
Согласно изобретению устройство содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом. При этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью.
Цилиндрическая стоячая волна характеризуется чередованием пучностей и узлов, при этом в пучностях цилиндрической стоячей волны происходит резонансное увеличение амплитуды ультразвуковых колебаний, достаточное для снижения вязкости тяжелых нефтей и нефтепродуктов в результате кавитационного и теплового воздействия без увеличения потребляемой мощности.
В частных случаях выполнения устройства резонансные частоты источника ультразвуковых колебаний составляют 1-100 кГц, мощность источника ультразвуковых колебаний - от 100 до 1000 Вт.
Изобретение поясняется чертежами.
На фиг. 1 представлен общий вид устройства для снижения вязкости нефти и нефтепродуктов в поперечном сечении.
На фиг. 2 представлена структура цилиндрической стоячей волны в нефти, заполняющей отрезок металлической трубы.
Устройство для снижения вязкости нефти и нефтепродуктов (фиг. 1) содержит ультразвуковой пьезоэлектрический модуль, состоящий из цилиндрического пьезоэлемента 1, электродов 2, 3, отрезка металлической трубы 4, фланцев для крепления к трубопроводу 5 и источника ультразвуковых колебаний 6 с диапазоном от 1 до 100 кГц и мощностью от 100 до 1000 Вт. Сигнал от источника ультразвуковых колебаний 6 поступает на электроды 2, 3 и возбуждает ультразвуковые колебания цилиндрического пьезоэлемента 1, которые передаются отрезку металлической трубы 4, и нефти, заполняющей трубопровод. Резонансные частоты источника ультразвуковых колебаний 6, а также диаметры цилиндрического пьезоэлемента 1 и отрезка металлической трубы 4 выбираются таким образом, чтобы в нефти, заполняющей отрезок металлической трубы 4, возбуждалась цилиндрическая стоячая волна.
Схема образования цилиндрической стоячей волны в нефти, заполняющей отрезок металлической трубы, приведена на фиг. 2. При приложении к электродам 2, 3 электрического напряжения заданной частоты, в цилиндрическом пьезоэлементе 1 и отрезке металлической трубы 4 возбуждаются ультразвуковые колебания, максимумы смещения которых находятся на внутренней границе отрезка металлической трубы 4 и внешней границе цилиндрического пьезоэлемента 1.
Таким образом, в нефти, заполняющей отрезок металлической трубы 4, устанавливается цилиндрическая стоячая волна, одна из пучностей акустического давления которой 8 находится на границе нефти и внутренней отрезка (внутренней границе отрезка) металлической трубы 4, вторая пучность акустического давления 7 располагается на центральной оси отрезка металлической трубы 4, а между ними располагаются узлы акустического давления цилиндрической стоячей волны 5, 6. При изменении резонансной частоты источника ультразвуковых колебаний в нефти образуются цилиндрические стоячие волны с кратным числом узлов и пучностей, которые также могут быть использованы для обработки нефти, заполняющей отрезок металлической трубы.
Основная мода ультразвуковых колебаний в нефти, заполняющей отрезок металлической трубы, определяется уравнением Бесселя первого рода нулевого порядка [6]. Как видно из фиг. 2, цилиндрическая стоячая волна устанавливается, когда первый максимум 8 функции Бесселя находится на внутренней границе отрезка металлической трубы 4. То есть, когда ее первая производная равна нулю на этой границе. Это условие выполняется, когда
kr=η1,
где r - радиус трубы, k - волновой вектор, η1 - первый ноль первой производной функции Бесселя первого рода нулевого порядка. Волновой вектор k определяется как
где - частота, с - скорость звука в нефти. Соответственно, искомая частота резонансных ультразвуковых колебаний равна
Например, при внутреннем диаметре трубопровода 125 мм (ГОСТ 20295-85: Трубы стальные сварные для магистральных газонефтепроводов) [7] и скорости звука в нефти 1350 м/с (RU №2133332, МПК Е21B 43/00, опубликовано 20.07.1999) [8], учитывая, что η1=3,832, получаем частоту цилиндрической стоячей волны, равную 13,18 кГц.
В качестве примера реализации рассмотрим устройство для снижения вязкости нефти и нефтепродуктов, показанное на фиг. 1, в котором сформирована цилиндрическая стоячая волна, показанная на фиг. 2. При увеличении мощности, передаваемой от источника ультразвуковых колебаний 6 (фиг. 1), амплитуда цилиндрической стоячей волны начинает расти до тех пор, пока энергия, передаваемая нефти от источника ультразвуковых колебаний 6 при помощи цилиндрического пьезоэлемента за период, станет равной потерям акустической энергии в нефти. Так как энергия цилиндрической стоячей волны пропорциональна квадрату амплитуды, то справедливо выражение
Здесь А0 - амплитуда бегущей волны, А1 - амплитуда стоячей волны, α - коэффициент акустических потерь за период. Соответственно,
В частности, при акустических потерях энергии за период, равный 20% (α=0,2), характерных для мазутов марок M100 и М40 на частоте 20 кГц при температурах мазута 40 и 30°C соответственно, амплитуда цилиндрической стоячей волны превысит амплитуду бегущей волны в 25 раз при тех же энергозатратах.
Источники информации
1. US №6,279,653, МПК Е21В 028/00, опубликовано 28.08.2001.
2. US №7,059,413, МПК Е21В 43/24, опубликовано 13.06.2006.
3. RU №2228912, МПК C02F 1/36, опубликовано 10.09.2002.
4. RU №2549383, МПК C10G 15/08, опубликовано 09.01.2013.
5. RU №2382933, МПК F17D 1/16, опубликовано 28.10.2008 – прототип.
6. Г.Н. Ватсон. Теория бесселевых функций. М.: 1949. Ч. 1.
7. ГОСТ 20295-85: Трубы стальные сварные для магистральных газонефтепроводов.
8. RU №2133332, МПК Е21В 43/00 опубликовано 20.07.1999.
название | год | авторы | номер документа |
---|---|---|---|
Способ активизации проницаемости горных пород при разработке месторождений флюидов | 2020 |
|
RU2750770C1 |
СПОСОБ ВОЗДЕЙСТВИЯ НА ФЛЮИД НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ ПРИ ДОБЫЧЕ НЕФТИ | 2004 |
|
RU2281387C2 |
МНОГОЧАСТОТНОЕ ПРИЕМОИЗЛУЧАЮЩЕЕ АНТЕННОЕ УСТРОЙСТВО | 2018 |
|
RU2700031C1 |
Устройство для интенсификации перекачки тяжелых нефтей по трубопроводам | 2015 |
|
RU2612238C1 |
Способ ультразвуковой диспергации деэмульгатора в водонефтяной эмульсии | 2020 |
|
RU2768664C2 |
СПОСОБ ПРЕДУПРЕЖДЕНИЯ ОТЛОЖЕНИЯ ПАРАФИНА В НЕФТЯНОЙ СКВАЖИНЕ | 2004 |
|
RU2263765C1 |
УСТРОЙСТВО ДЛЯ ДЕГАЗАЦИИ НЕФТЕВОДОГАЗОВОЙ СМЕСИ В СЕПАРАТОРЕ ПЕРВОЙ СТУПЕНИ (ВАРИАНТЫ) | 2008 |
|
RU2356597C1 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ, СПОСОБ КРЕКИНГА НЕФТИ И УСТРОЙСТВО ДЛЯ ИХ РЕАЛИЗАЦИИ | 2003 |
|
RU2285793C2 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ СКВАЖИННОГО ФИЛЬТРА | 2012 |
|
RU2506413C1 |
СПОСОБ УЛЬТРАЗВУКОВОЙ КАВИТАЦИОННОЙ ОБРАБОТКИ ЖИДКИХ СРЕД И РАСПОЛОЖЕННЫХ В СРЕДЕ ОБЪЕКТОВ | 2011 |
|
RU2455086C1 |
Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче и транспортировке тяжелых нефтей и нефтепродуктов. Техническим результатом изобретения является повышение эффективности процесса добычи и перекачивания тяжелых нефтей и нефтепродуктов за счет снижения их вязкости в результате одновременного кавитационного и теплового воздействия ультразвуковых стоячих волн высокой интенсивности без увеличения общего энергопотребления. Устройство содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом, при этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью. 2 з.п. ф-лы, 2 ил.
1. Устройство для снижения вязкости нефти и нефтепродуктов, отличающееся тем, что оно содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом, при этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью.
2. Устройство по п. 1, отличающееся тем, что резонансные частоты источника ультразвуковых колебаний составляют 1-100 кГц.
3. Устройство по п. 1, отличающееся тем, что мощность источника ультразвуковых колебаний составляет 100-1000 Вт.
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ, СПОСОБ КРЕКИНГА НЕФТИ И УСТРОЙСТВО ДЛЯ ИХ РЕАЛИЗАЦИИ | 2003 |
|
RU2285793C2 |
СПОСОБ УЛЬТРАЗВУКОВОЙ КАВИТАЦИОННОЙ ОБРАБОТКИ ЖИДКИХ СРЕД И РАСПОЛОЖЕННЫХ В СРЕДЕ ОБЪЕКТОВ | 2011 |
|
RU2455086C1 |
RU 2053604 C1, 27.01.1996. |
Авторы
Даты
2017-04-18—Публикация
2015-11-19—Подача