УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ Российский патент 2017 года по МПК G01N27/72 

Описание патента на изобретение RU2619310C1

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов.

Известно устройство для определения содержания феррита в материале (RU 2559323 C1, МПК7 G01N 27/72, опубл. 10.08.2015), содержащее два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу и разделены воздушным промежутком, а другие два противоположных полюса магнитов соединены С-образным магнитопроводом, на который намотана катушка индуктивности, подключенная к регистратору ЭДС индукции, шток для размещения испытуемого материала закреплен на оси электродвигателя для вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. В воздушном промежутке между полюсами магнитов установлена тепловая камера, соединенная с источником тока, шток для размещения испытуемого материала размещен в объеме тепловой камеры через боковое отверстие в ее корпусе, измерительный спай термопары размещен внутри тепловой камеры через второе боковое отверстие в ее корпусе, второй регистратор ЭДС подключен к концам термопары.

Недостатком устройства является его низкая точность температурных измерений. В конструкции устройства температуру испытуемого материала определяют по измерениям термо-ЭДС термопары, расположенной внутри тепловой камеры. Из-за нагрева путем передачи тепла от тепловой камеры другим компонентам устройства, расположенным в непосредственной близости, происходит искажение сигнала ЭДС с катушки индуктивности вследствие нагрева самой катушки, магнитопровода и магнитов. Таким образом, с помощью этого устройства затруднительно корректно измерить температурные зависимости степени ферритизации материала. Вследствие чего практически становится невозможно проводить исследования магнитных фазовых переходов многокомпонентных магнитных материалов, в которых наблюдаются множественные магнитные переходы.

Задачей изобретения является повышение точности определения температурных зависимостей степени ферритизации магнитных материалов.

Устройство для определения содержания феррита в материале содержит так же, как в прототипе, два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу, а другие два противоположных полюса магнитов соединены С-образным магнитопроводом, на который намотана катушка индуктивности, подключенная к регистратору ЭДС индукции. Между полюсами магнитов расположена тепловая камера, соединенная с источником тока. Шток для размещения испытуемого материала вставлен в объем тепловой камеры через боковое отверстие и закреплен на оси электродвигателя для вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. Измерительный спай термопары размещен внутри тепловой камеры через второе боковое отверстие в ее корпусе. Второй регистратор ЭДС подключен к концам термопары.

Согласно изобретению корпус устройства выполнен с углублением в верхней части, при этом двойные стенки корпуса снабжены каналами для прохода и патрубками для ввода и вывода охлаждающей жидкости, патрубки через шланги соединены с термостатом. Два постоянных магнита закреплены внутри корпуса на противоположных стенках углубления, так что магнитные силовые линии, соединяющие их полюса, пересекают пространство внутри углубления. Выводы катушки индуктивности соединены с первым разъемом в корпусе, к которому подключен первый регистратор ЭДС индукции. В углублении корпуса установлена тепловая камера. Внутри корпуса расположен электродвигатель, на оси которого закреплен шток, вставленный в тепловую камеру через боковые отверстия в стенке углубления корпуса и тепловой камеры. Измерительный спай термопары вставлен в объем тепловой камеры через второе боковое отверстие в ней так, что свободные концы термопары размещены внутри корпуса и соединены через второй электрический разъем в корпусе со вторым регистратором ЭДС.

Шток может быть снабжен капсулой из немагнитного материала для размещения в ней испытуемого порошкового материала.

Предложенное выполнение корпуса устройства позволяет защитить все узлы устройства от нагрева тепловой камерой и поддерживать их температуру на постоянном уровне. Это повышает точность измерений температуры испытуемого материала и исключает зависимость ЭДС индукции катушки индуктивности от температуры окружающих объектов и, как следствие, позволяет измерять с высокой достоверностью температурные зависимости степени ферритизации материалов, что дает возможность с высоким разрешением определять по ним температуры магнитных фазовых переходов многокомпонентных магнитных материалов.

На фиг. 1 показана схема устройства для определения содержания феррита в материале.

На фиг. 2 приведена зависимость величины сигнала ЭДС индукции U от температуры испытуемого материала, измеренная с помощью устройства-прототипа.

На фиг. 3 приведена зависимость величины сигнала ЭДС индукции U от температуры испытуемого материала, измеренная на предлагаемом устройстве.

Устройство для определения содержания феррита в материале содержит корпус 1, который выполнен с углублением в верхней части (фиг. 1). Двойные стенки корпуса 1 снабжены каналами для прохода и патрубками для ввода и вывода охлаждающей жидкости. Патрубки через шланги соединены с термостатом (на фиг. 1 не показано).

Два постоянных магнита 2 закреплены внутри корпуса 1 на противоположных стенках углубления. Два противоположных полюса постоянных магнитов 2 ориентированы навстречу друг другу так, что магнитные силовые линии, соединяющие их полюса, пересекают пространство внутри углубления. Другие два противоположных полюса постоянных магнитов 2 соединены С-образным магнитопроводом 3. На С-образный магнитопровод 3 намотана катушка индуктивности 4, к выводам которой через первый разъем в корпусе 1 подключен первый регистратор ЭДС индукции 5.

В углублении корпуса 1 установлена тепловая камера 6, которая соединена с источником тока (на фиг. 1 не показан).

Внутри корпуса 1 расположен электродвигатель 7, на оси которого закреплен шток 8, вставленный в тепловую камеру 6 через боковые отверстия в стенке углубления корпуса 1 и тепловой камеры 6. На конце штока 8, расположенном в объеме тепловой камеры 6, закреплен монолитный испытуемый материал или закреплена капсула 9 из немагнитного материала с испытуемым порошкообразным материалом. Измерительный спай термопары 10 вставлен в объем тепловой камеры 6 через второе боковое отверстие в ней и второе боковое отверстие в стенке углубления корпуса 1 так, что свободные концы термопары 10 размещены внутри корпуса 1 и соединены через второй электрический разъем в корпусе 1 с вторым регистратором ЭДС 11.

Корпус 1 выполнен из нержавеющей немагнитной стали. Постоянные магниты 2 представляют собой параллелепипеды из самарий-кобальтовой магнитной керамики. С-образный магнитопровод 3 изготовлен из феррита марки 3 СЧ19. Катушка индуктивности 4 намотана проводом марки ПЭЛШО сечением 0,2 мм с количеством витков 3000. Первый регистратор ЭДС индукции 5 представляет собой вольтметр переменного тока с пределами измерений (0,1-100) В. Тепловая камера 6 представляет собой печь сопротивления, все детали которой выполнены из немагнитного материала. Шток 8 выполнен из немагнитной нержавеющей стали. Электродвигатель 7 представляет собой стандартный электродвигатель постоянного или переменного тока, обеспечивающий стабильную фиксированную частоту вращения в пределах (100-1000) об/мин. Первый и второй электроды термопары 10 выполнены соответственно из хромелевой и алюмелевой проволоки. В качестве регистратора ЭДС 11 термопары 10 может быть использован, например, электроизмерительный прибор В7-16А. В качестве термостата может быть использован жидкостной циркуляционный термостат с охлаждением Portlab NC-12D.

Устройство работает следующим образом. Стабилизируют на заданном уровне температуру корпуса 1 и всех узлов устройства, находящихся внутри корпуса 1, посредством непрерывной циркуляции при помощи внутреннего компрессора термостата воды, поступающей из термостата, через каналы между двойными стенками корпуса 1. Капсулу 9 с испытуемым материалом перемещают в объеме тепловой камеры 6 с заданной частотой путем вращения штока 8 с помощью электродвигателя 7 с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов 2. Во время перемещения капсулы 9 с испытуемым материалом в объеме тепловой камеры 6, расположенной в выемке корпуса 1 и между полюсами магнитов 2, происходит намагничивание испытуемого материала, что приводит к изменению магнитной проницаемости промежутка между магнитами 2. В результате происходит изменение величины магнитного потока в С-образном магнитопроводе 3. В свою очередь, изменение магнитного потока приводит к возникновению ЭДС на катушке индуктивности 4, величина которой пропорциональна содержанию феррита в испытуемом материале. Первый регистратор ЭДС индукции 5 измеряет ЭДС, наведенную в катушке индуктивности 4. Одновременно с помощью тепловой камеры 6 проводят равномерный нагрев испытуемого материала до температуры, на 100-200°С превышающей температуру Кюри исследуемого материала, контролируя скорость нагрева и температуру по показаниям второго регистратора ЭДС 11 термопары 10, и с заданной периодичностью фиксируют по мере нагрева значения температуры нагрева испытуемого материала и соответствующие им величины ЭДС индукции катушки индуктивности 4. По показаниям второго регистратора ЭДС 11 осуществляют контроль температуры объема нагревательной камеры и используют данный сигнал для управления температурной программой нагрева испытуемого материала. При достижении температуры нагрева температуры Кюри в испытуемом материале происходит магнитный фазовый переход, что проявляется в резком уменьшении ЭДС индукции катушки индуктивности 4 вплоть до нулевого значения. Строят график зависимости ЭДС индукции катушки индуктивности 4 от температуры нагрева испытуемого материала. По месту положения на данном графике скачка ЭДС индукции катушки индуктивности 4 определяют соответствующую ему температуру нагрева испытуемого материала, которая численно совпадает с температурой Кюри.

Содержание феррита для исследуемого материала при комнатной температуре определяют по величине полученного сигнала ЭДС индукции катушки индуктивности 4 с использованием заранее снятой градуировочной зависимости, полученной по результатам измерений ЭДС индукции катушки индуктивности 4 для материалов с различным известным содержанием феррита.

С помощью предлагаемого устройства провели измерения зависимостей ЭДС индукции катушки 4 от температуры нагрева для смеси в равных весовых частях двух ферритовых материалов с известной величиной температуры Кюри, соответствующей магнитному фазовому переходу. В качестве первой компоненты смеси испытуемого материала использовали ферритовую керамику 3СЧ18 химического состава Li0,649Fe1,598Ti0,5Zn0,2Mn0,051О4, температура Кюри которой составляет 300°С (http://www.rusgates.ru/company/microwave_ferrits/poroperties_of_microwave_ferrits/). В качестве второй компоненты смеси испытуемого материала использовали пентаферрит лития, температура Кюри которого равна 667°С (http://cyberleninka.m/article/n/vliyanie-vklyucheniy-oksida-alyuminiya-na-magnitnyy-fezovyy-perehod-v-ferritovoy-keramike-3sch18). Полученные для смеси испытуемых материалов графики зависимостей ЭДС индукции U катушки индуктивности 4 от температуры нагрева, полученные с помощью устройства-прототипа и предлагаемого устройства, представлены на фиг. 2 и фиг. 3 соответственно. Определенные по месту положения резкого спада ЭДС индукции U значения температуры Кюри для феррита 3СЧ-18 и пентаферрита лития с помощью устройства-прототипа были равными 290±10°С и 665±3°С, а полученные с помощью предлагаемого устройства составили 299±2°C и 666±2°С. Таким образом, значения температур магнитных фазовых переходов, определенные с помощью предложенного устройства более точны и определены с меньшей погрешностью.

Похожие патенты RU2619310C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ 2014
  • Гынгазов Сергей Анатольевич
  • Лысенко Елена Николаевна
  • Франгульян Тамара Семеновна
RU2559323C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ 2003
  • Гынгазов С.А.
  • Суржиков А.П.
  • Пронота Н.В.
RU2239182C1
Способ определения содержания феррита в материале и устройство для его осуществления 1990
  • Суржиков Анатолий Петрович
  • Белов Александр Иванович
  • Лучников Александр Петрович
  • Писаков Вадим Константинович
  • Сигов Александр Сергеевич
SU1756813A1
ВЕНТИЛЬНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ ДЛЯ ВЫСОКОСКОРОСТНОЙ УЛЬТРАЦЕНТРИФУГИ 2005
  • Шубин Анатолий Николаевич
  • Калитеевский Алексей Кириллович
  • Кураев Валентин Владимирович
  • Лисейкин Вячеслав Павлович
  • Богомолов Николай Евгеньевич
  • Смирнов Дмитрий Анатольевич
  • Филиппов Сергей Петрович
  • Жулин Михаил Аркадьевич
  • Добулевич Владимир Михайлович
RU2292624C1
УНИВЕРСАЛЬНАЯ ТЕРМОЭЛЕКТРИЧЕСКАЯ МАШИНА БЕЛАШОВА 2009
  • Белашов Алексей Николаевич
RU2414041C1
ЭЛЕКТРОМАГНИТНАЯ СИСТЕМА 2023
  • Кудреватых Николай Владимирович
  • Гусев Сергей Викторович
RU2816442C1
Преобразователь линейных ускорений 1990
  • Шердаков Петр Михайлович
  • Михайлов Александр Николаевич
  • Рудый Анатолий Сергеевич
SU1774268A1
ПРЕОБРАЗОВАТЕЛЬ ГРАВИТАЦИОННОЙ ЭНЕРГИИ 2011
  • Слаев Валерий Абдуллович
RU2461096C1
ГЕНЕРАТОР ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 1997
  • Тучин Б.Т.
RU2178940C2
УСТРОЙСТВО УСТАНОВКИ ВЗРЫВАТЕЛЯ 2007
  • Чижевский Олег Тимофеевич
  • Маслов Владимир Петрович
  • Колпащиков Юрий Васильевич
  • Рахматулин Рустэм Шамильевич
  • Ситников Михаил Анатольевич
  • Барбашов Геннадий Васильевич
  • Рогов Юрий Александрович
  • Генкин Юрий Владиславович
  • Миронов Владимир Федорович
RU2359215C2

Иллюстрации к изобретению RU 2 619 310 C1

Реферат патента 2017 года УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство для определения содержания феррита в материале содержит корпус с углублением в верхней части, при этом двойные стенки корпуса снабжены каналами для прохода и патрубками для ввода и вывода охлаждающей жидкости. Патрубки через шланги соединены с термостатом. Внутри корпуса на противоположных стенках углубления закреплены два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу, так что магнитные силовые линии, соединяющие их полюса, пересекают пространство внутри углубления. Другие два противоположных полюса магнитов соединены С-образным магнитопроводом, на который намотана катушка индуктивности. Выводы катушки индуктивности соединены с первым разъемом в корпусе, к которому подключен первый регистратор ЭДС индукции. В углублении корпуса установлена тепловая камера. С наружной стороны корпуса внутри углубления установлена тепловая камера, соединенная с источником тока. Внутри корпуса расположен электродвигатель, на оси которого закреплен шток. Шток вставлен в тепловую камеру через боковые отверстия в стенке углубления корпуса и тепловой камеры. Шток предназначен для размещения испытуемого материала в объеме тепловой камеры и вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. Измерительный спай термопары вставлен в объем тепловой камеры через второе боковое отверстие в ней так, что свободные концы термопары размещены внутри корпуса и соединены через второй электрический разъем в корпусе со вторым регистратором ЭДС. Техническим результатом является повышение точности определения температурных зависимостей степени ферритизации магнитных материалов. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 619 310 C1

1. Устройство для определения содержания феррита в материале, содержащее два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу, а другие два противоположных полюса магнитов соединены С-образным магнитопроводом, на который намотана катушка индуктивности, подключенная к регистратору ЭДС индукции, между полюсами магнитов установлена тепловая камера, соединенная с источником тока, шток для размещения испытуемого материала вставлен в объем тепловой камеры через боковое отверстие и закреплен на оси электродвигателя для вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса, измерительный спай термопары размещен внутри тепловой камеры через второе боковое отверстие, к концам термопары подключен второй регистратор ЭДС, отличающееся тем, что корпус устройства выполнен с углублением в верхней части, при этом двойные стенки корпуса снабжены каналами для прохода и патрубками для ввода и вывода охлаждающей жидкости, патрубки через шланги соединены с термостатом, два постоянных магнита закреплены внутри корпуса на противоположных стенках углубления, так что магнитные силовые линии, соединяющие их полюса, пересекают пространство внутри углубления, выводы катушки индуктивности соединены с первым разъемом в корпусе, к которому подключен первый регистратор ЭДС индукции, в углублении корпуса установлена тепловая камера, внутри корпуса расположен электродвигатель, на оси которого закреплен шток, вставленный в тепловую камеру через боковые отверстия в стенке углубления корпуса и тепловой камеры, измерительный спай термопары вставлен в объем тепловой камеры через второе боковое отверстие в ней так, что свободные концы термопары размещены внутри корпуса и соединены через второй электрический разъем в корпусе со вторым регистратором ЭДС.

2. Устройство по п. 1, отличающееся тем, что шток может быть снабжен капсулой из немагнитного материала для размещения в ней испытуемого порошкового материала.

Документы, цитированные в отчете о поиске Патент 2017 года RU2619310C1

ГЫНГАЗОВ СЕРГЕЙ АНАТОЛЬЕВИЧ
АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук, РАДИАЦИОННО-ТЕРМИЧЕСКАЯ АКТИВАЦИЯ ДИФФУЗИОННОГО МАССОПЕРЕНОСА В ОКСИДНОЙ КЕРАМИКЕ, 1-37, Томск-2011
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ 2014
  • Гынгазов Сергей Анатольевич
  • Лысенко Елена Николаевна
  • Франгульян Тамара Семеновна
RU2559323C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФЕРРИТА В МАТЕРИАЛЕ 2003
  • Гынгазов С.А.
  • Суржиков А.П.
  • Пронота Н.В.
RU2239182C1
US 3938037 A1, 10.02.1976.

RU 2 619 310 C1

Авторы

Гынгазов Сергей Анатольевич

Лысенко Елена Николаевна

Франгульян Тамара Семеновна

Даты

2017-05-15Публикация

2016-03-01Подача