Способ работы импульсной радиолокационной системы и устройство для его реализации Российский патент 2017 года по МПК G01S13/06 

Описание патента на изобретение RU2619468C1

Способ обнаружения и измерения объектов ближнего радиуса действия с помощью импульсной радиолокационной системы и импульсная радиолокационная система для его реализации

Изобретение относится к импульсной радиолокационной технике (в том числе сверхширокополосной), преимущественно ближнего радиуса действия (до нескольких десятков метров), и может быть использовано для снижения уровня фазового шума на выходе фазового детектора подобных систем.

Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным устройством признаков.

Обычно, в радиолокационных системах для обеспечения когерентности используются колебания непрерывного генератора, сигнал которого напрямую используется для формирования импульсов генератора передатчика и опорного генератора приемника, см., например, Бакулев П.А. Радиолокационные системы. Учебник для вузов. Москва. Издательство «Радиотехника», 2004, с. 170-172. Данный способ оправдан для дорогих систем, работающих, в том числе, на большие дальности, т.к. для его реализации используются дорогие сверхвысокочастотные (СВЧ) ключи, а непрерывный характер работы СВЧ-генератора приводит к высокому энергопотреблению системы. Для недорогих радиолокационных систем ближнего действия на первый план выходят требования дешевизны, простоты, малого энергопотребления.

Из исследованного уровня техники известен импульсный сверхширокополосный датчик по патенту РФ 2369323, предназначенный для измерения частоты дыхания и сердечных сокращений. Датчик содержит блок управления, выполненный с возможностью формирования временной задержки импульса синхронизации, тракт формирования зондирующего сигнала, передающую и приемную антенны, тракт передатчика зондирующего сигнала, выход которого соединен с передающей антенной, тракт приемника отраженного сигнала, вход которого соединен с приемной антенной, и первый электронный переключатель. Вход первого электронного переключателя соединен с выходом тракта формирования зондирующего сигнала, а его выходы - с входом тракта передатчика зондирующего сигнала и с трактом приемника отраженного сигнала.

Выходы каналов обработки отраженного сигнала, входящих в состав тракта приемника отраженного сигнала, подключены к тракту вычисления частот дыхания и сердечных сокращений. В состав тракта вычисления частот входят два фильтра частот, два сумматора, два блока вычисления амплитуды сигнала, два блока вычисления энергии сигнала, два интегратора, два компаратора, два блока перемножения сигналов, два блока формирования опорного сигнала, второй и третий электронные переключатели. Недостатком данного устройства является то, что длительность опорного импульса всегда равна длительности зондирующего импульса, вследствие чего опорный импульс всегда будет зависим от зондирующего импульса, что ставит в зависимость границы зоны чувствительности устройства по дальности от занимаемой полосы частот и разрешающей способности устройства, что сильно ограничивает функциональные возможности устройства, уменьшая точность, достоверность и дальность измерений.

Известно устройство для дистанционного бесконтактного мониторинга параметров жизнедеятельности человека по патенту РФ №2462990, содержащее измерительный модуль с блоком обработки сигнала и родительский блок, причем измерительный модуль выполнен в виде передающего канала и двух независимых приемных каналов, приемные антенны которых, пространственно разнесенные относительно друг друга, связаны соответственно с последовательно соединенными фазовым детектором, полосовым фильтром и усилителем, выходы которых подключены соответственно к входам аналого-цифрового преобразователя, передающий канал реализован в виде последовательно соединенных формирователя коротких импульсов, СВЧ-генератора зондирующих сигналов и передающей антенны, а вторые входы фазовых детекторов первого и второго приемных каналов связаны соответственно через направленные ответвители с выходами СВЧ-генератора зондирующих сигналов передающего канала, кроме того, блок обработки сигнала выполнен на микроконтроллере, входы и выходы которого подключены соответственно к выходу аналого-цифрового преобразователя и входу формирователя коротких импульсов, как и шинами связи соответственно с входами-выходами первого радиотрансивера, первой энергонезависимой памятью и системой контроля заряда, причем выход первого радиотрансивера соединен с приемопередающей антенной первого радиотрансивера, а соответствующие входы-выходы системы контроля заряда связаны соответственно с перезаряжаемым аккумулятором и портом USB, в свою очередь, родительский блок, реализован на втором радиотрансивере, входы-выходы которого подключены соответственно к приемопередающей антенне второго радиотрансивера, второй энергонезависимой памяти, дисплею на органических светодиодах, кнопкам, зуммеру, вибратору и стабилизатору с малым падением напряжения, соответствующий вход которого соединен с электрической батареей. Недостатком данного устройства также является зависимость границы зоны чувствительности устройства по дальности от занимаемой полосы частот и разрешающей способности устройства, что сильно ограничивает функциональные возможности устройства, уменьшая точность, достоверность и дальность измерений.

Указанные недостатки устранены в известном по патенту РФ №2533683 устройстве дистанционного бесконтактного мониторинга параметров жизнедеятельности живого организма, которое содержит по меньшей мере один измерительный блок по меньшей мере один блок управления и обработки информации и по меньшей мере один блок интерфейса, при этом измерительный блок соединен с блоком управления и обработки информации, а блок управления и обработки информации соединен с блоком интерфейса, причем измерительный блок содержит по меньшей мере один радиопередающий модуль, и по меньшей мере один радиоприемный модуль, а блок управления и обработки информации выполнен с возможностью формирования управляющих импульсов для каждого из радиопередающего и радиоприемного модулей произвольно задержанных относительно друг друга по времени, согласно изобретению каждый из радиопередающих модулей и/или каждый из радиоприемных модулей, входящих в состав измерительного блока, выполнен независимым один от другого, а блок управления и обработки информации дополнительно выполнен с возможностью формирования управляющих импульсов для каждого из радиопередающего и радиоприемного модулей, произвольной относительно друг друга длительности.

Данное устройство характеризуется тем, что каждый радиопередающий модуль содержит последовательно соединенные СВЧ-генератор зондирующих импульсов, усилитель и передающую антенну, а каждый из радиоприемных модулей содержит СВЧ-генератор опорных импульсов, при этом каждый из радиоприемных модулей содержит последовательно соединенные приемную антенну, малошумящий усилитель, фазовый детектор, полосовой фильтр и усилитель, при этом второй вход фазового детектора соединен с выходом СВЧ-генератора опорных импульсов.

Данное устройство, принятое в качестве прототипа, обеспечивает повышение точности и достоверности измерений при одновременном увеличении дальности действия и уменьшении вероятности обнаружения посторонних ложных объектов за счет того, что наличие СВЧ-генератора зондирующих импульсов в радиопередающем модуле и СВЧ-генератора опорных импульсов в радиоприемном модуле обеспечивает независимость указанных модулей относительно друг друга, что, например, позволяет сформировать короткий зондирующий сигнал с полосой частот шире 500 МГц, соответствующий нормам сверхширокополосных сигналов (UWB), и при этом одновременно сформировать задержанный длинный опорный сигнал для обеспечения требуемой зоны действия устройства по дальности.

Недостатком данного устройства является наличие фазового шума, что снижает отношение сигнал/шум в приемном тракте устройства и, как следствие, ухудшает характеристики обнаружения и измерения лоцируемых устройством объектов.

Задачей заявляемого изобретения является уменьшения фазового шума, улучшение отношения сигнал/шум в приемнике и улучшение характеристик обнаружения и измерения лоцируемых объектов.

Сущность первого независимого объекта заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для достижения указанного выше обеспечиваемого изобретением технического результата.

Способ обнаружения и измерения объектов ближнего радиуса действия с помощью импульсной радиолокационной системы, заключающийся в том, что формируют радиосигнал с СВЧ-генератора зондирующих импульсов радиопередающего модуля и излучают его передающей антенной в пространство в сторону наблюдаемого объекта, после чего принимают отраженный от наблюдаемого объекта радиосигнал приемной антенной радиоприемного модуля и подают на вход фазового детектора, на опорный вход которого подают сигнал СВЧ-генератора опорных импульсов, после чего спектр этого сигнала выделяют и подают на блок управления и обработки информации с целью выявления состояний наблюдаемого объекта, отличающийся тем, что формируют дополнительный референсный СВЧ-сигнал, который подают на СВЧ-генератор зондирующих импульсов и СВЧ-генератор опорных импульсов и осуществляют привязку фаз сигналов СВЧ-генератора зондирующих импульсов и СВЧ-генератора опорных импульсов к фазе референсного СВЧ-сигнала.

Сущность второго независимого объекта заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для достижения указанного выше обеспечиваемого изобретением технического результата.

Импульсная радиолокационная система для реализации способа по п. 1, содержащая формирователь коротких импульсов, радиопередающий модуль, включающий последовательно соединенные СВЧ-генератор зондирующих импульсов и передающую антенну, и радиоприемный модуль, включающий последовательно соединенные приемную антенну и фазовый детектор приемного радиосигнала, а также СВЧ-генератор опорных импульсов, при этом один их выходов формирователя коротких импульсов соединен с входом СВЧ-генератора зондирующих импульсов, а другой - с входом СВЧ-генератора опорных импульсов, выход которого соединен с входом фазового детектора приемного радиосигнала, выход которого связан с блоком управления и обработки информации, отличающаяся тем, что она снабжена генератором и делителем референсного СВЧ-сигнала, при этом вход генератора референсного СВЧ-сигнала соединен с выходом формирователя коротких импульсов, а его выход - с входом делителя референсного СВЧ-сигнала, выходы которого соединены с входом СВЧ-генератора зондирующих импульсов радиопередающего модуля и с входом СВЧ-генератора опорных импульсов.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что подача СВЧ сигнала с референсного генератора на СВЧ-генератор зондирующих импульсов и СВЧ-генератор опорных импульсов привязывает фазы сигналов СВЧ-генератора зондирующих импульсов и фазы сигналов СВЧ-генератора опорных импульсов к фазе референсного СВЧ-сигнала, что, в конечном счете, приводит к значительному уменьшению «дрожания» фаз обоих генераторов и, как следствие, уменьшению фазового шума на выходе фазового детектора, что приводит к улучшению характеристик обнаружения и измерения лоцируемых объектов.

Сущность заявляемого технического решения поясняется чертежами, на котором на фиг. 1 представлена блок-схема заявленной импульсной радиолокационной системы, на фиг. 2 - сравнение графиков шума на выходе фазового детектора системы при отключенном (верхний график) и включенном (нижний график) генераторе референсного СВЧ-сигнала, на фиг. 3 - «дрожание» фазы сигнала на выходе СВЧ-генератора зондирующих импульсов и СВЧ-генератора опорных импульсов при отсутствии референсного СВЧ-сигнала, на фиг. 4 - то же, при наличии референсного СВЧ-сигнала.

Импульсная радиолокационная система содержит формирователь коротких импульсов 1, радиопередающий модуль, включающий последовательно соединенные СВЧ-генератор зондирующих импульсов 2 и передающую антенну 3, и радиоприемный модуль, включающий последовательно соединенные приемную антенну 4 и фазовый детектор приемного радиосигнала 5, а также СВЧ-генератор опорных импульсов 6. Один из выходов формирователя коротких импульсов 1 соединен с входом СВЧ-генератора зондирующих импульсов 2, а другой - с входом СВЧ-генератора опорных импульсов 6, выход которого соединен с входом фазового детектора приемного радиосигнала 5, выход которого связан с блоком управления и обработки информации (на чертеже условно не показан). Система снабжена генератором референсного СВЧ-сигнала 7 и делителем референсного СВЧ-сигнала 8, при этом вход генератора референсного СВЧ-сигнала 7 соединен с выходом формирователя коротких импульсов 1, а его выход - с входом делителя референсного СВЧ-сигнала 8, выходы которого соединены с входом СВЧ-генератора зондирующих импульсов 2 радиопередающего модуля и с входом СВЧ-генератора опорных импульсов 6.

Импульсная радиолокационная система работает следующим образом.

Референсный СВЧ-сигнал с генератора 7 подают на вход СВЧ-генератора зондирующих импульсов 2 радиопередающего модуля и на вход СВЧ-генератора опорных импульсов 6. В результате этого осуществляется связь между генераторами 2 и 6, которая способствует привязке фазы сигналов этих генераторов к фазе референсного СВЧ-сигнала генератора 7. Тем самым значительно уменьшается «дрожание» фазы сигналов генераторов 2 и 6, как следствие, уменьшается фазовый шум на выходе фазового детектора приемного радиосигнала 5, соединенного с входом блока управления и обработки информации, что, в конечном счете, приводит к улучшению характеристик обнаружения и измерения лоцируемых объектов.

Эффективность заявленного способа была экспериментально проверена путем исследования сигнала на выходе генераторов 2 и 6 и фазового детектора приемного радиосигнала 5 при отсутствии референсного СВЧ-сигнала с генератора 7 и при его наличии. При отсутствии референсного СВЧ-сигнала с генератора 7 в сигналах на выходе генераторов 2 и 6 был отмечен высокий уровень «дрожания» фаз сигналов (Фиг. 3), а на выходе фазового детектора 5 высокий уровень шума (Фиг. 2, верхний график). При наличии референсного СВЧ-сигнала с генератора 7 «дрожание» фаз на выходе генераторов 2 и 6 заметно снижается (Фиг. 4), в результате чего снижается шум на выходе фазового детектора 5 (Фиг. 2, нижний график).

Похожие патенты RU2619468C1

название год авторы номер документа
УСТРОЙСТВО ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО МОНИТОРИНГА ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЖИВОГО ОРГАНИЗМА 2012
  • Зиганшин Эдуард Гусманович
  • Нумеров Михаил Андреевич
RU2533683C2
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО МОНИТОРИНГА ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА 2010
  • Зиганшин Эдуард Гусманович
RU2462990C2
Устройство дистанционного измерения диэлектрической проницаемости плоскослоистых диэлектриков естественного происхождения с суммарно-разностной обработкой интерференционных сигналов 2024
  • Линец Геннадий Иванович
  • Баженов Анатолий Вячеславович
  • Гривенная Наталья Владимировна
  • Малыгин Сергей Владимирович
  • Мельников Сергей Владимирович
  • Гончаров Владислав Дмитриевич
  • Димитренко Вячеслав Юрьевич
RU2821440C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ КАБЕЛЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ И СВЯЗИ С ПОМОЩЬЮ МЕТОДА МАРКЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Диденко В.И.
  • Шахов С.Н.
RU2215298C2
УСТРОЙСТВО ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ВЛАЖНОСТИ ПЛОСКОСЛОИСТЫХ ДИЭЛЕКТРИКОВ С ПОТЕРЯМИ 2023
  • Линец Геннадий Иванович
  • Баженов Анатолий Вячеславович
  • Гривенная Наталья Владимировна
  • Малыгин Сергей Владимирович
  • Мельников Сергей Владимирович
  • Гончаров Владислав Дмитриевич
RU2804381C1
КОМПЛЕКС РАДИОЭЛЕКТРОННОГО ПОДАВЛЕНИЯ СИСТЕМЫ РАДИОСВЯЗИ 2012
  • Федотов Александр Алексеевич
  • Байлов Владимир Васильевич
  • Гармаш Владимир Федосеевич
  • Дорух Игорь Георгиевич
  • Пивоваров Иван Иванович
RU2541886C2
РАДИОЛОКАТОР СО СЖАТИЕМ ИМПУЛЬСОВ 1990
  • Никитенко Юрий Гордеевич
  • Сизиков Юрий Николаевич
  • Хаврич Станислав Павлович
  • Стройнюк Валентин Николаевич
SU1841071A1
СПОСОБ СТАБИЛИЗАЦИИ УРОВНЯ СИГНАЛА НА ВХОДЕ АВТОДИННОГО АСИНХРОННОГО ПРИЕМОПЕРЕДАТЧИКА СИСТЕМЫ РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ 2023
  • Носков Владислав Яковлевич
  • Галеев Ринат Гайсеевич
  • Богатырев Евгений Владимирович
  • Иванов Вячеслав Элизбарович
  • Черных Олег Авитисович
RU2808230C1
УСТРОЙСТВО ФОРМИРОВАНИЯ ОТВЕТНЫХ ПОМЕХ РАДИОЛОКАЦИОННЫМ СТАНЦИЯМ 2002
  • Вернигора В.Н.
  • Володин А.В.
  • Дятлов А.П.
  • Поляниченко В.П.
RU2237372C2
УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ПОМЕХ РАДИОЛОКАЦИОННЫМ СТАНЦИЯМ 2001
  • Блохин В.П.
  • Володин А.В.
  • Дятлов А.П.
  • Поляниченко В.П.
RU2217874C2

Иллюстрации к изобретению RU 2 619 468 C1

Реферат патента 2017 года Способ работы импульсной радиолокационной системы и устройство для его реализации

Изобретение относится к импульсной радиолокационной технике, преимущественно ближнего радиуса действия, и может быть использовано для снижения уровня фазового шума на выходе фазового детектора подобных систем. Достигаемый технический результат – улучшение характеристик обнаружения и измерения лоцируемых объектов. Импульсная радиолокационная система содержит формирователь коротких импульсов, радиопередающий модуль, включающий последовательно соединенные СВЧ-генератор зондирующих импульсов и передающую антенну, и радиоприемный модуль, включающий последовательно соединенные приемную антенну и фазовый детектор приемного радиосигнала, а также СВЧ-генератор опорных импульсов, при этом один из выходов формирователя коротких импульсов соединен с входом СВЧ-генератора зондирующих импульсов, а другой - с входом СВЧ-генератора опорных импульсов, выход которого соединен с входом фазового детектора приемного радиосигнала, выход которого связан с блоком управления и обработки информации, система снабжена также генератором референсного СВЧ-сигнала и делителем референсного СВЧ-сигнала, при этом вход генератора референсного СВЧ-сигнала соединен с выходом формирователя коротких импульсов, а его выход - с входом делителя референсного СВЧ-сигнала, выходы которого соединены с входом СВЧ-генератора зондирующих импульсов радиопередающего модуля и с входом СВЧ-генератора опорных импульсов. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 619 468 C1

1. Способ обнаружения и измерения объектов ближнего радиуса действия с помощью импульсной радиолокационной системы, заключающийся в том, что формируют радиосигнал с СВЧ-генератора зондирующих импульсов радиопередающего модуля и излучают его передающей антенной в пространство в сторону наблюдаемого объекта, после чего принимают отраженный от наблюдаемого объекта радиосигнал приемной антенной радиоприемного модуля и подают на вход фазового детектора, на опорный вход которого подают сигнал СВЧ-генератора опорных импульсов, после чего спектр этого сигнала выделяют и подают на блок управления и обработки информации с целью выявления состояний наблюдаемого объекта, отличающийся тем, что формируют дополнительный референсный СВЧ-сигнал, который подают на СВЧ-генератор зондирующих импульсов и СВЧ-генератор опорных импульсов и осуществляют привязку фаз сигналов СВЧ-генератора зондирующих импульсов и СВЧ-генератора опорных импульсов к фазе референсного СВЧ-сигнала.

2. Импульсная радиолокационная система для реализации способа по п. 1, содержащая формирователь коротких импульсов, радиопередающий модуль, включающий последовательно соединенные СВЧ-генератор зондирующих импульсов и передающую антенну, и радиоприемный модуль, включающий последовательно соединенные приемную антенну и фазовый детектор приемного радиосигнала, а также СВЧ-генератор опорных импульсов, при этом один их выходов формирователя коротких импульсов соединен с входом СВЧ-генератора зондирующих импульсов, а другой - с входом СВЧ-генератора опорных импульсов, выход которого соединен с входом фазового детектора приемного радиосигнала, выход которого связан с блоком управления и обработки информации, отличающаяся тем, что она снабжена генератором и делителем референсного СВЧ-сигнала, при этом вход генератора референсного СВЧ-сигнала соединен с выходом формирователя коротких импульсов, а его выход - с входом делителя референсного СВЧ-сигнала, выходы которого соединены с входом СВЧ-генератора зондирующих импульсов радиопередающего модуля и с входом СВЧ-генератора опорных импульсов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2619468C1

УСТРОЙСТВО ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО МОНИТОРИНГА ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЖИВОГО ОРГАНИЗМА 2012
  • Зиганшин Эдуард Гусманович
  • Нумеров Михаил Андреевич
RU2533683C2
ГЕНЕРАТОР ИМПУЛЬСОВ С НОРМИРОВАННЫМ ФАЗОВЫМ ШУМОМ 1998
  • Чулков В.А.
RU2133552C1
СПОСОБ ПОВЫШЕНИЯ ШИРОКОПОЛОСНОСТИ ПРИЕМОПЕРЕДАЮЩЕГО МОДУЛЯ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ, ИСПОЛЬЗУЮЩЕГО ГЕНЕРАЦИЮ СИГНАЛОВ МЕТОДОМ ПРЯМОГО ЦИФРОВОГО СИНТЕЗА, И ВАРИАНТЫ ЕГО РЕАЛИЗАЦИИ 2008
  • Мухин Владимир Витальевич
  • Нестеров Юрий Григорьевич
  • Валов Сергей Вениаминович
  • Васин Александр Акимович
  • Киреев Сергей Николаевич
  • Пономарев Леонид Иванович
RU2392704C1
СПОСОБ СНИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ИЗМЕРЕНИЯ МАЛЫХ ВЫСОТ ДО НУЛЯ И УСТРОЙСТВО КОГЕРЕНТНОГО ИМПУЛЬСНО-ДОПЛЕРОВСКОГО РАДИОВЫСОТОМЕРА, РЕАЛИЗУЮЩЕГО СПОСОБ 2008
  • Валов Сергей Вениаминович
  • Семухин Владимир Федорович
  • Мухин Владимир Витальевич
  • Сиразитдинов Камиль Шайхуллович
RU2412450C2
US 4818999 A, 04.04.1989
US 5243303 A, 07.09.1993
US 4855944 A, 08.08.1989.

RU 2 619 468 C1

Авторы

Зиганшин Эдуард Гусманович

Нумеров Михаил Андреевич

Даты

2017-05-16Публикация

2016-05-31Подача