ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ Российский патент 2017 года по МПК B64B1/06 B64D47/00 H04B7/26 

Описание патента на изобретение RU2621406C1

Экологический дирижабль является летательным управляемым аппаратом, который относится к воздушным судам легче воздуха и поддерживаемым в атмосфере статическим давлением воздуха, а при принудительном движении - также и аэродинамической подъемной силой, которая позволяет при помощи горизонтальных и вертикальных рулей менять высоту и направление полета. Он предназначен для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений: магистральных и межпромысловых нефте-, газо- и продуктопроводов, а также железнодорожных и автомобильных магистралей, линий электропередач и других объектов, в том числе и природных.

Известны дирижабли (патенты РФ №№2.185.999, 2.307.762, 2.311.319, 2.532.301; патент США №4.089.492; патент Германии №1.962.151; патент ЕР №0.771.729; патент WO №2.011/012.138 и другие).

Из известных устройств наиболее близким к предлагаемому является «Экологический дирижабль» (патент РФ №2.532.301, В64В 1/06, 2013), который и выбран в качестве прототипа.

Известный дирижабль имеет аппаратуру оперативной двухсторонней связи между дирижаблем и исследовательским центром с использованием двух частот и сложных сигналов с фазовой манипуляцией, что повышает надежность и достоверность обмена дискретной информацией.

Известный дирижабль обеспечивает повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между дирижаблем и исследовательским центром путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. При этом для подавления ложных сигналов (помех), принимаемых по дополнительным каналам, используются дополнительные тракты, реализующие явление резонанса.

Однако указанные операции можно выполнить более эффективным методом с меньшими техническими затратами.

Технической задачей изобретения является повышение эффективности дуплексной радиосвязи между дирижаблем и исследовательским центром путем выбора частот wг1 и wг2 гетеродинов равными несущим частотам w1 и w2 принимаемых сложных сигналов с фазовой манипуляцией wг1=w1 и wг2=w2 и поддержания указанных равенств с помощью систем фазовой автоматической подстройки частот wг1 и wг2 гетеродина.

Поставленная задача решается тем, что в дирижабле, содержащем, в соответствии с ближайшим аналогом, корпус с несколькими отсеками, заполненными несущим газом легче воздуха, гондолу с двигателями, топливными баками, кабиной управления, салонами для экипажа и наблюдателей-исследователей, приборы дистанционного зондирования земной поверхности и атмосферы для лазерного зондирования, видео-, кино- и аэрофотосъемки в различных спектральных диапазонах: видимом, инфракрасном и ультрафиолетовом, откидные и выносные устройства - пробоотборники воздуха, воды и почвы, устройства посадки на неподготовленные участки Земли и водной поверхности и высадки групп исследователей-экологов и ликвидаторов, лабораторное оборудование для получения, обработки и анализа проб воздуха, воды, почв, подпочвенных грунтов, донных отложений, торфа, растительности, а также газоанализаторы, масс-спектрометры, спектрографы, хроматографы, аппаратуру точной координатной привязки по спутниковой информации, аппаратуру оперативной двусторонней связи с другими воздушными, космическими, наземными, морскими и речными исследовательскими центрами, а также обмена результатами наблюдений в режиме реального времени, при этом аппаратура оперативной двухсторонней связи на дирижабле и каждом исследовательском центре выполнена в виде фазового детектора, блока регистрации и последовательно включенных приемной антенны, приемника GPS-сигналов, контроллера, второй вход которого соединен с выходом приборов дистанционного зондирования земной поверхности и атмосферы, фазового манипулятора, второй вход которого соединен с первым выходом задающего генератора, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, антенного переключателя, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности и второго смесителя, второй вход которого соединен с выходом второго гетеродина, отличается от ближайшего аналога тем, что аппаратура оперативной двухсторонней связи на дирижабле и каждом исследовательском пункте снабжена фильтром нижних частот, перемножителем и фазовращателем на 90°, причем к выходу второго смесителя последовательно подключены фильтр нижних частот, перемножитель, второй вход которого соединен с выходом второго усилителя мощности, и фазовый детектор, второй вход которого через фазовращатель на 90° соединен с выходом второго гетеродина, а выход подключен к управляющему входу второго гетеродина, вход блока регистрации соединен с выходом фильтра нижних частот, частоты wг1 и wг2 гетеродинов выбраны равными несущим частотам w1 и w2 принимаемых сложных сигналов с фазовой манипуляцией wг1=w1 и wг2=w2 и указанные равенства поддерживаются с помощью систем фазовой автоматической подстройкой частот wг1 и wг2 гетеродинов.

Структурная схема аппаратуры, размещенной на дирижабле, представлена на фиг. 1, структурная схема аппаратуры, размещенной на каждом воздушном, космическом, наземном, морском и речном исследовательском центре, представлена на фиг. 2.

Аппаратура, размещенная на дирижабле (исследовательском центре), содержит последовательно включенные приемную антенну 1 (19), приемник 2 (20) GPS-сигналов, контроллер 4 (22), второй вход которого соединен с выходом приборов 3 (21) дистанционного зондирования земной поверхности и атмосферы, фазовый манипулятор 6 (24), второй вход которого соединен с первым выходом задающего генератора 5 (23), первый смеситель 8 (26), второй вход которого соединен с выходом первого гетеродина 7 (25), усилитель 9 (27) первой промежуточной частоты, первый усилитель 10 (28) мощности, антенный переключатель 11 (29), вход-выход которого связан с приемопередающей антенной 12 (30), второй усилитель 13 (31) мощности, второй смеситель 15 (33), второй вход которого соединен с выходом второго гетеродина 14 (32), фильтр 16 (34) нижних частот, перемножитель 37 (40), второй вход которого соединен с выходом второго усилителя 13 (31) мощности, и фазовый детектор 17 (35), второй вход которого через фазовращатель 38 (41) на 90° соединен с выходом второго гетеродина 14 (32), а выход соединен с управляющим входом второго гетеродина 14 (32), вход блока регистрации 18 (36) соединен с выходом фильтра 16 (34) нижних частот.

Перемножитель 37 (40), фазовый детектор 17 (35) и фазовращатель 38 (41) на 90° образуют систему 39 (42) ФАПЧ.

Примером конкретного исполнения дирижабля является дирижабль, у которого жесткий каркас обтянут мягкой оболочкой с несколькими отсеками, заполненными несущим газом легче воздуха (водород, гелий, метан, пары воды). Система управления имеет горизонтальные и вертикальные рули. Подвесная гондола снабжена двигателем, топливными баками, а также кабиной управления, салонами для экипажа и операторов-наблюдателей. Имеется рабочий технический отсек с приборами наблюдения и бортовой химической экспресс-лабораторией.

Оптимальные диапазоны параметров его таковы. Объем корпуса 2000-10000 м3. Длина дирижабля 25-50 м, а его наибольший диаметр 8-15 м. Число газовых отсеков 5-10 штук. Подъемная сила достигает 1,6-8 т. Масса воздушного корабля 1,2-5 т. Чистая подъемная сила составляет 0,4-3 т.

Особенно эффективен дирижабль для осуществления экологического патрулирования протяженных объектов: нефте-, газо-, продуктопроводов, транспортных магистралей, в том числе железнодорожных, автомобильных и водных. Его осуществимость подтверждается тем, что дирижабли широко демонстрируются на международных авиационных выставках, а оснащение его экологической аппаратурой не представляет собой технической сложности.

Аппаратура оперативной двухсторонней связи работает следующим образом.

Приемник 2 GPS-сигналов с приемной антенной 1 обеспечивает прием сигналов глобальной навигационной системы GPS (Global Positioning System), известной также, как Navstar. В состав данной системы входят космический сегмент, состоящий из 24 КА, сеть наземных станций наблюдения за их работой и пользовательский сегмент (навигационные приемники GPS-сигналов). Информация о местонахождении дирижабля с выхода приемника 2 GPS-сигналов поступает на первый вход контроллера 4, на второй вход которого подается информация с выхода приборов 3 дистанционного зондирования земной поверхности и атмосферы для лазерного зондирования, видео-, кино- и аэрофотосъемки в различных диапазонах: видимом, инфракрасном и ультрафиолетовом.

Контроллер 4 формирует модулирующий код M1(t), содержащий информацию о местонахождении дирижабля и о результатах дистанционного зондирования земной поверхности и атмосферы. Указанный код поступает на первый вход фазового манипулятора 6, на второй вход которого с первого выхода задающего генератора 5 подается высокочастотное колебание

Uc1(t)=Uc1⋅cos(wct+ϕc1), 0≤t≤Tc1,

где Uc1, wc, ϕc1, Тс1 - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания.

На выходе фазового манипулятора 6 образуется сложный сигнал с фазовой манипуляцией (ФМн)

u1(t)=Uc1⋅cos[wct+ϕк1(t)+ϕc1], 0<t<Tc1,

где ϕк1(t)={О,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем ϕк1(t)=const при кτэ<t<(к+1)τэ и может изменяться скачком при t=кτэ, т.е. на границах между элементарными посылками (к=1, 2, …, N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc1(Tc1=Nτэ), который поступает на первый вход первого смесителя 8, на второй вход которого подается напряжение первого гетеродина 7

uг1(t)=Uг1⋅cos(wг1t+ϕг1).

На выходе смесителя 8 образуются напряжения комбинационных частот. Усилителем 9 выделяется напряжение первой промежуточной (суммарной) частоты

uпр1(t)=Uпр1⋅[wпр1t+ϕк1(t)+ϕпр1], 0<t<Tc1,

где ;

K1 - коэффициент передачи смесителя;

wпр1=wc1+wГ1 - первая промежуточная (суммарная) частота;

ϕпр1с1Г1.

Это напряжение после усиления в усилителе 10 мощности через антенный переключатель 11 излучается приемопередающей антенной 12 в эфир на частоте w1=wпр1, улавливается приемопередающей антенной 30 и через антенный переключатель 29 и усилитель 31 мощности поступает на первый вход смесителя 33. На второй вход смесителя 33 подается напряжение uГ1(t) гетеродина 32.

Причем частота wГ1 второго гетеродина 32 выбирается равной частоте w1 принимаемого сложного ФМн сигнала (wГ1=w1). На выходе смесителя 33 образуются следующие напряжения:

u2(t)=UH1⋅cos⋅ϕк1(t)+UH1⋅cos[2wпpt+ϕк1(t)+2ϕпр1],

где .

Фильтром 34 нижних частот выделяется низкочастотное напряжение (напряжение нулевой частоты)

uH1(t)=UH1⋅cos⋅ϕк1(t), 0≤t≤TC1,

пропорциональное модулирующему коду M1(t). Это напряжение регистрируется блоком 36 регистрации.

Следует отметить, что выбор частоты wГ1 гетеродина 32, равной частоте w1 принимаемого сложного ФМн сигнала (wГ1=w1), обеспечивает совмещение двух процедур: преобразование принимаемого сложного ФМн сигнала на нулевую частоту и выделение низкочастотного напряжения UH1(t), пропорционального модулирующему коду M1(t), т.е. синхронное детектирование принимаемого сложного ФМн сигнала с помощью гетеродина 32, смесителя 33 и фильтра 34 нижних частот. Такая схемная конструкция позволяет избавиться от дополнительных каналов приема (зеркальных и комбинационных).

Так как частота w1 принимаемого сложного ФМн сигнала может изменяться под воздействием различных дестабилизирующих факторов, в том числе и эффекта Доплера, то для выполнения и поддержания равенства wГ1=w1 используется система 42 ФАПЧ, состоящая из перемножителя 40, фазовращателя 41 на 90° и фазового детектора 35.

При передаче сообщений с исследовательского центра с помощью задающего генератора 23 формируется высокочастотное колебание

uc2(t)=Uc2⋅cos(wct+ϕc1), 0≤t≤Tc2,

которое поступает на второй вход фазового манипулятора 24. На первый вход последнего подается модулирующий код M2(t) с выхода контроллера 22. Модулирующий код M2(t) содержит сведения о местоположении исследовательского центра и результаты дистанционного зондирования земной поверхности и атмосферы. На выходе фазового манипулятора 24 формируется сложный ФМн сигнал

u2(t)=Uc2⋅cos[wct+ϕk2(t)+ϕс2], 0≤t≤Tc2,

который поступает на первый вход смесителя 26, на второй вход которого подается напряжение гетеродина 25

uГ2(t)=UГ2⋅cos(wГ2t+ϕГ2).

На выходе смесителя 26 образуется напряжение комбинационных частот. Усилителем 27 выделяется напряжение промежуточной частоты

uпр(t)=Uпр⋅cos[wпpt+(ϕk2(t)+ϕk2(t)+ϕпр], 0≤t≤Tc,

где ;

wпp=wГ2-wc=w2 - промежуточная частота;

ϕпрГ2с2.

Это напряжение после усиления в усилителе 28 мощности через антенный переключатель 29 излучается приемопередающей антенной 30 в эфир на частоте w2=wпp, улавливается приемопередающей антенной 12 и через антенный переключатель 11 и усилитель 13 мощности поступает на первый вход смесителя 15, на второй вход которого подается напряжение гетеродина 14

uГ2(t)=UГ2⋅cos(wГ2t+ϕГ2).

Причем частота wГ2 гетеродина 14 выбирается равной частоте w2 принимаемого сложного ФМн сигнала (wГ2=w2). На выходе смесителя 15 образуются следующие напряжения

u3(t)=UH2⋅cosϕk2(t)+UH2⋅cos[2wпpt+ϕk2(t)+2ϕпр2],

где .

Фильтром 16 нижних частот выделяется низкочастотное напряжение (напряжение нулевой частоты)

uH2(t)=UH2⋅cosϕk2(t), 0≤t≤Tc2,

пропорциональное модулирующему коду M2(t). Это напряжение регистрируется блоком 18 регистрации.

В этом случае для выполнения и поддержания равенства wГ2=w2 используется система 39 ФАПЧ, состоящая из перемножителя 37, фазовращателя 38 на 90° и фазового детектора 17.

Предлагаемый дирижабль обеспечивает повышение надежности и достоверности обмена дискретной информацией между экологическим дирижаблем и исследовательским центром. Это достигается использованием двух частот и сложных сигналов с фазовой манипуляцией.

Указанные сигналы открывают новые возможности в технике передачи сообщений. Они позволяют применять новый вид селекции - структурную селекцию.

С точки зрения обнаружения сложные сигналы с фазовой манипуляцией обладают высокой энергетической и структурной скрытностью.

Энергетическая скрытность данных сигналов обусловлена их высокой сжимаемостью во времени и по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный ФМн сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных сигналов с фазовой манипуляцией обусловлена большим разнообразием их форм и значительными диапазонами изменений параметров, что затрудняет оптимальную или хотя бы квазиоптимальную обработку сложных сигналов априорно неизвестной структуры с целью повышения чувствительности приемника.

Таким образом, предлагаемый экологический дирижабль по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение эффективности дуплексной радиосвязи между дирижаблем и исследовательским центром. Это достигается за счет выбора частот wГ1 и wГ2 гетеродинов равными несущим частотам w1 и w2 принимаемых сложных сигналов с фазовой манипуляцией wГ1=w1 и wГ2=w2 и автоматического поддержания указанных равенств с помощью систем ФАПЧ.

Причем подавление ложных сигналов (помех), принимаемых по дополнительным каналам, происходит за счет преобразования принимаемых сложных ФМн сигналов на нулевую частоту. Указанное преобразование позволяет также выделять модулирующие коды из принимаемых сложных ФМн сигналов, т.е. синхронное их детектирование. Совмещение двух указанных процедур обеспечивается гетеродинами, смесителями и фильтрами нижних частот, которые одновременно выполняют роли преобразователей частоты и синхронных демодуляторов принимаемых сложных ФМн сигналов. Такие схемные конструкции свободны от дополнительных каналов приема, а системы ФАПЧ обеспечивают автоматическое слежение за изменениями несущих частот принимаемых сложных ФМн сигналов, которые могут возникать под влиянием различных дестабилизирующих факторов, в том числе и эффекта Доплера.

Похожие патенты RU2621406C1

название год авторы номер документа
ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ 2013
  • Дикарев Виктор Иванович
  • Рогалева Любовь Викторовна
  • Горшков Лев Капитонович
RU2532301C1
ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ 2006
  • Дикарев Виктор Иванович
  • Парнышков Николай Дмитриевич
  • Ковалев Александр Павлович
  • Николаев Владимир Александрович
  • Авдюков Владимир Михайлович
  • Доронин Александр Павлович
RU2307762C1
РЕГИОНАЛЬНАЯ ИНФОРМАЦИОННАЯ СИСТЕМА СВЯЗИ 2004
  • Кармазинов Ф.В.
  • Прядкин Е.И.
  • Дикарев В.И.
  • Рыбкин Л.В.
RU2264034C1
АВТОМАТИЗИРОВАННАЯ СИСТЕМА АВАРИЙНОГО И ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ РЕГИОНА 2006
  • Дикарев Виктор Иванович
  • Парнышков Николай Дмитриевич
  • Ковалев Александр Павлович
  • Николаев Владимир Александрович
  • Доронин Александр Павлович
  • Маторина Дарина Юрьевна
RU2308059C1
АВИАЦИОННЫЙ МЕТЕОРОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ АКТИВНЫХ ВОЗДЕЙСТВИЙ НА ОБЛАКА 2005
  • Дикарев Виктор Иванович
  • Парнышков Николай Дмитриевич
  • Ковалев Александр Павлович
  • Авдюков Владимир Михайлович
  • Николаев Владимир Александрович
  • Доронин Александр Павлович
RU2295742C1
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО НАБЛЮДЕНИЯ ЗА СОСТОЯНИЕМ БОЛЬНЫХ 2006
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Ратников Вячеслав Альбертович
  • Черкашин Дмитрий Викторович
  • Шпита Иван Иванович
RU2311122C1
СИСТЕМА ДЛЯ НЕПРЕРЫВНОГО СЛЕЖЕНИЯ ЗА ДЕЯТЕЛЬНОСТЬЮ СЕРДЦА 2004
  • Бойцов Сергей Анатольевич
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Рыбкин Леонид Всеволодович
  • Шуленин Сергей Николаевич
RU2281026C2
СПОСОБ КОНТРОЛЯ ЗА ТРАНСПОРТИРОВКОЙ ГРУЗОВ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Михайлов Евгений Александрович
  • Шмидт Марина Ильинична
  • Ковешникова Мария Юрьевна
RU2452996C1
ТЕРРИТОРИАЛЬНАЯ СИСТЕМА КОНТРОЛЯ ТРАНСПОРТИРОВКИ ОСОБО ВАЖНЫХ И ОПАСНЫХ ГРУЗОВ 2009
  • Дикарев Виктор Иванович
  • Калинин Владимир Анатольевич
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Скворцов Андрей Геннадьевич
RU2403623C1
КОМПЛЕКСНАЯ СИСТЕМА БЕЗОПАСНОСТИ ОБЪЕКТА 2010
  • Кармазинов Феликс Владимирович
  • Прядкин Евгений Иванович
  • Трухин Юрий Александрович
RU2446477C2

Иллюстрации к изобретению RU 2 621 406 C1

Реферат патента 2017 года ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ

Экологический дирижабль содержит корпус с несколькими отсеками, заполненными несущим газом легче воздуха, гондолу с двигателями, топливные баки, кабину управления, салоны для экипажа, приборы дистанционного зондирования земной поверхности и атмосферы, откидные и выносные устройства - пробоотборники и лабораторное оборудование для анализа воздуха, грунта и растительности, спутниковую навигационную аппаратуру, аппаратуру оперативной двусторонней связи. Аппаратура оперативной двухсторонней связи на дирижабле и в каждом исследовательском центре содержит фазовый детектор, блок регистрации, приемную антенну, приемник GPS-сигналов, контроллер, приборы дистанционного зондирования земной поверхности и атмосферы, фазовый манипулятор, задающий генератор, два смесителя, два гетеродина, усилитель первой промежуточной частоты, два усилителя мощности, антенный переключатель, фильтр нижних частот, перемножитель, фазовращатель на 90°, соединенные определенным образом. Обеспечивается эффективность радиосвязи между дирижаблем и исследовательским центром. 2 ил.

Формула изобретения RU 2 621 406 C1

Дирижабль, содержащий корпус с несколькими отсеками, заполненными несущим газом легче воздуха, гондолу с двигателями, топливными баками, кабиной управления, салонами для экипажа и наблюдателей-исследователей, приборы дистанционного зондирования земной поверхности и атмосферы для лазерного зондирования, видео-, кино- и аэрофотосъемки в различных спектральных диапазонах: видимом, инфракрасном и ультрафиолетовом, откидные и выносные устройства - пробоотборники воздуха, воды и почвы, устройства посадки на неподготовленные участки Земли и водной поверхности и высадки групп исследователей-экологов и ликвидаторов, лабораторное оборудование для получения, обработки и анализа проб воздуха, воды, почв, подпочвенных грунтов, донных отложений, торфа, растительности, а также газоанализаторы, масс-спектрометры, спектрографы, хроматографы, аппаратуру точной координатной привязки по спутниковой информации, аппаратуру оперативной двусторонней связи с другими воздушными, космическими, наземными, морскими и речными исследовательскими центрами, а также обмена результатами наблюдений в режиме реального времени, при этом аппаратура оперативной двухсторонней связи на дирижабле и в каждом исследовательском центре выполнена в виде фазового детектора, блока регистрации и последовательно включенных приемной антенны, приемника GPS-сигналов, контроллера, второй вход которого соединен с выходом приборов дистанционного зондирования земной поверхности и атмосферы, фазового манипулятора, второй вход которого соединен с первым выходом задающего генератора, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, антенного переключателя, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности и второго смесителя, второй вход которого соединен с выходом второго гетеродина, отличающийся тем, что аппаратура оперативной двухсторонней связи на дирижабле и каждом исследовательском пункте снабжена фильтром нижних частот, перемножителем и фазовращателем на 90°, причем к выходу второго смесителя последовательно подключены фильтр нижних частот, перемножитель, второй вход которого соединен с выходом второго усилителя мощности, и фазовый детектор, второй вход которого через фазовращатель на 90° соединен с выходом второго гетеродина, а выход подключен к управляющему входу второго гетеродина, вход блока регистрации соединен с выходом фильтра нижних частот, частоты wГ1 и wГ2 гетеродинов выбраны равными несущим частотам w1 и w2 принимаемых сложных сигналов с фазовой манипуляций wГ1=w1 и wГ2=w2 и указанные равенства поддерживаются с помощью систем фазовой автоматической подстройки частот wГ1 и wГ2 гетеродинов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2621406C1

ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ 2013
  • Дикарев Виктор Иванович
  • Рогалева Любовь Викторовна
  • Горшков Лев Капитонович
RU2532301C1
АВТОМАТИЧЕСКИЙ БЕСПИЛОТНЫЙ ДИАГНОСТИЧЕСКИЙ КОМПЛЕКС 2007
  • Дикарев Виктор Иванович
  • Казаков Николай Петрович
RU2362981C2
ЭКОЛОГИЧЕСКИЙ ДИРИЖАБЛЬ 2006
  • Дикарев Виктор Иванович
  • Парнышков Николай Дмитриевич
  • Ковалев Александр Павлович
  • Николаев Владимир Александрович
  • Авдюков Владимир Михайлович
  • Доронин Александр Павлович
RU2307762C1
US 20160013858 A1, 14.01.2016
US 20160122014 A1, 05.05.2016.

RU 2 621 406 C1

Авторы

Дикарев Виктор Иванович

Рогалева Любовь Викторовна

Даты

2017-06-05Публикация

2016-06-17Подача