ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА Российский патент 2017 года по МПК B01D61/42 B01D61/46 

Описание патента на изобретение RU2622659C1

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Аналогом данной конструкции является баромембранный аппарат, приведенный в работе Дытнерского Ю.И. Обратный осмос и ультрафильтрация. М.: Химия, 1978, стр. 111, 197-200. Он представляет собой однокамерный аппарат, состоящий из пористого анода и катода, прианодной и прикатодной мембран. Недостатками являются малая площадь разделения при высоких энергозатратах на процесс разделения. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является аппарат плоскокамерного типа, конструкция которого приведена в патенте RU 2528263 С1, 10.09.2014, Бюл. №25. Известный аппарат состоит из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типа выступ-впадина, отверстий для подвода электрических проводов, последовательно соединенных через дренажную сетку с монополярным пористым электродом-пластиной "плюс" или "минус" и находящихся под пористой подложкой из ватмана и мембраной, канала для отвода прикатодного или прианодного пермеата, образованного монополярным пористым электродом-пластиной с дренажной сеткой и диэлектрической камерой корпуса через каналы на диэлектрических камерах корпуса.

Недостатками являются отсутствие дифференцированного выделения прикатодного и прианодного пермеата, низкое качество и эффективность разделения растворов, увеличенное гидравлическое сопротивление в аппарате.

Технический результат выражается увеличенной способностью дифференцированного выделения прикатодного и прианодного пермеата, увеличением качества и эффективности разделения растворов, снижением гидравлического сопротивления в аппарате, увеличением площади прикатодных и прианодных мембран в единице объема аппарата, в предотвращении смещения сетки-турбулизатора от рабочей части поверхности мембран для создания равномерных гидродинамических условий при разделении в электробаромембранном аппарате за счет того, что чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" имеют прямоугольные переточные окна, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" по другую последовательно дренажные сетки, монополярно-пористые пластины электрод-катод и электрод-анод, пористые подложки из ватмана, прикатодные и прианодные мембраны соответственно до внешнего периметра прокладок, за исключением тех мест пористых подложек из ватмана, прикатодных и прианодных мембран, где расположены прямоугольные пластины-вставки толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод и электрод-анод. По внутреннему периметру прокладок расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран.

В пространстве прямоугольного переточного окна чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" образован межмембранный канал, который на всю ширину и высоту под прокладкой и от прокладки до прокладки с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" по другую залит полимерной заливкой, межмембранный канал также образован в тех местах, где расположена сетка-турбулизатор. Внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно. На чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока соединенные с дренажными сетками. На внутренней стороне диэлектрических фланцев корпуса имеются отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной", на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов "минус" или "плюс".

На фиг. 1 изображен электробаромембранный аппарат плоскокамерного типа, продольный разрез; фиг. 2 - вид сверху; фиг. 3 - вид слева; фиг. 4 - сечение А-А на фиг. 1; фиг. 5 - сечение Б-Б на фиг. 1; фиг. 6 - сечение В-В на фиг. 1; фиг. 7 - вид Г (2:1) увеличенный, схема разделения в межмембранном канале на фиг. 1; фиг. 8 - вид Д (2:1) повернутый, пространственная модель межмембранного канала на фиг. 7.

Электробаромембранный аппарат плоскокамерного типа состоит из чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 2 и 1, соответственно имеющих прямоугольные переточные окна 19, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" 2 и 1 по другую последовательно дренажные сетки 17 и 25, монополярно-пористые пластины электрод-катод и электрод-анод 14 и 30, пористые подложки из ватмана 16 и 31, прикатодные и прианодные мембраны 15 и 27 соответственно до внешнего периметра прокладок 5, за исключением тех мест пористых подложек из ватмана 16, 31, прикатодных и прианодных мембран 15, 27, где расположены прямоугольные пластины-вставки 35 толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод 14 и электрод-анод 30. По внутреннему периметру прокладок 5 расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок 5 вставлены концы сеток-турбулизаторов 13, представляющих собой переплетенные под утлом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран. В пространстве прямоугольного переточного окна 19 чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 2 и 1 образован межмембранный канал, который на всю ширину и высоту под прокладкой 5 и от прокладки 5 до прокладки 5 с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 2 и 1 по другую залит полимерной заливкой 20, межмембранный канал также образован в тех местах где расположена сетка-турбулизатор 13. Внутренние поверхности диэлектрических фланцев корпуса 3 снабжены уложенными последовательно друг на друга дренажными сетками 17, монополярно-пористыми пластинами электродом-катодом 14, пористыми подложками из ватмана 16, прикатодными мембранами 15 соответственно.

На чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" 2 и 1 имеются двусторонние отверстия 24 для подвода электрических проводов 26, залитые полимерным компаундом 21 от отрицательной и положительной клемм устройства для подвода постоянного электрического тока 6, соединенные с дренажными сетками 17 и 25. На внутренней стороне диэлектрических фланцев корпуса 3 имеются отверстие 24 для подвода электрического провода 26 от отрицательной клеммы устройства для подвода постоянного электрического тока 6 к дренажной сетке 17 и канал для отвода прикатодного пермеата 34 с диэлектрической сеткой 22 по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" расположены каналы для отвода прикатодного и прианодного пермеата 34 и 23 и отверстия 24 для подвода электрических проводов 26, штуцеров для отвода прикатодного и прианодного пермеата 7 и 29 в зависимости от схемы подключения "минус" или "плюс", болтов 8, шайб 9 и гаек 10, штуцеров ввода и вывода разделяемого раствора 11, 12, полимерной композиции 28, каналов ввода и вывода разделяемого раствора 32, 33 соответственно.

Чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" 2 и 1, диэлектрические фланцы корпуса 3, штуцера ввода и вывода разделяемого раствора 11, 12, диэлектрическая сетка 22 и штуцера для отвода прикатодного и прианодного пермеата 7, 29 в зависимости от схемы подключения "минус" или "плюс" могут быть изготовлены из капролона.

Монополярно-пористые пластины электрод-катод и электрод-анод 14 и 30 соответственно могут быть изготовлены из 20-45%-ного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ как и прямоугольные пластины вставки 35.

Сетки-турбулизаторы 13 представляют собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран марок МК-40, МА-40, МК-40Л, МА-41И, MA-ИЛ, МБ-1, МБ-2.

Полимерная заливка 20, полимерный компаунд 21 и полимерная композиция 28 изготавливаются из диэлектрических герметизирующих эпоксидных смол, пластмассы или клея холодной сваркой.

Дренажные сетки 17 и 25, находящиеся под монополярно-пористыми пластинами электродом-катодом и электродом-анодом 14 и 30 соответственно, могут быть изготовлены из материала Х18Н9Т, Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, 08X18T1.

Прокладка 5 может быть выполнена из паронита или прокладочной резины.

Металлические пластины 4 могут быть изготовлены из стали 3, стали 15, стали 25, стали 30, стали 45.

В качестве прикатодных и прианодных мембран 15, 27 соответственно могут применяться изготовленные в виде ленты, полотна мембраны следующих типов МГА-95, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, ESNA, УАМ-150П, УПМ-П, УГТМ-ПП, УПМ-50, УПМ-50М, УФМ-100, УФМ-50, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН (ОФМН)-П, МФФК-О, МФФК-3, ММК, ММПА+, МПС, МФФК-Г, ММФ4, ММТ.

Аппарат работает следующим образом.

Исходный раствор под давлением, превышающим осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 11 расположенный на диэлектрическом фланце корпуса 3, фиг. 1, 2, 3, подается, минуя полимерную композицию 28, по каналу ввода разделяемого раствора 32, фиг. 1, в первую камеру разделения, образованную прикатодной мембраной 15, прокладкой 5, по внутреннему периметру которой расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладки 5 вставлены концы сетки-турбулизатора 13, представляющей собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран соответственно, и прианодной мембраны 27, образуя, таким образом, межмембранный канал в тех местах, где расположена сетка-турбулизатор 13 и где она отсутствует в прямоугольном переточном окне 19.

В этот же момент времени к чередующимся диэлектрическим камерам корпуса с "выступом" и "впадиной" 2 и 1 и диэлектрическим фланцам корпуса 3, фиг. 1, включением устройства для подвода постоянного электрического тока 6 через электрические провода 26, проходящие в отверстиях 24, которые залиты полимерным компаундом 21, и соединенные с дренажными сетками 17 и 25, к аппарату подводится внешнее постоянное электрическое поле с заданной плотностью тока.

Раствор, двигаясь, перемешивается при помощи сетки-турбулизатора 13, фиг. 1, 4, 7, 8, и поступает к прикатодной и прианодной мембранам 15 и 27 соответственно, фиг. 1, 7, в зависимости от схемы подключения "минус" или "плюс".

Из образовавшейся между прикатодными, прианодными мембранами 15, 27, расположенными на диэлектрическом фланце корпуса 3 и диэлектрической камере корпуса с "впадиной" 1 и прокладкой 5, камеры разделения, фиг. 1, катионы и анионы, проникающие через прикатодную и прианодную мембраны 15 и 27, пористые подложки из ватмана 16 и 31, монополярно-пористые пластины электрод-катод и электрод-анод 14 и 30, дренажные сетки 17 и 25, уложенные последовательно друг на друге, проходят в пространстве между диэлектрическим фланцем корпуса 3 и монополярно-пористой пластиной электрод-катод 14 и диэлектрической камеры корпуса с "впадиной" 1 и монополярно-пористой пластиной электрод-анод 30 и по каналам для отвода прикатодного и прианодного пермеата 34 и 23 отводятся через штуцера для отвода прикатодного и прианодного пермеата 7 и 29 в виде оснований и кислот и газа в зависимости от схемы подключения "минус" или "плюс".

Оставшиеся в камере разделения анионы и катионы, движущиеся в ядре потока сетки-турбулизатора 13, фиг. 1, переходят через прямоугольное переточное окно 19, фиг. 1, 5, межмембранного канала увеличенной площади в диэлектрической камере корпуса с "впадиной" 1, причем общая площадь одного прямоугольного переточного окна 19 составляет Sпр.пер.окна=aдлина⋅bвысота, в следующую (вторую) камеру разделения, образованную соединенными между собой диэлектрическими камерами корпуса с "впадиной" и "выступом" 1 и 2, фиг. 1, с последовательно уложенными на них и друг на друга дренажными сетками 25 и 17, монополярно-пористыми пластинами электродом-анодом и электродом-катодом 30 и 14, пористыми подложками из ватмана 31 и 16, прианодными и прикатодными мембранами 27 и 15 соответственно в виде кислот и оснований и газа в зависимости от схемы подключения "минус" или "плюс", при этом в пространстве прямоугольного переточного окна 19 чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 2 и 1 образован межмембранный канал, который на всю ширину и высоту под прокладкой 5 и от прокладки 5 до прокладки 5 с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 2 и 1 по другую залит полимерной заливкой 20.

Раствор переходит из первой камеры разделения во вторую камеру разделения и далее по всем камерам разделения через прямоугольные переточные окна 19 увеличенной площади в чередующихся диэлектрических камерах корпуса с "впадиной" и "выступом" 2 и 1 всего аппарата фиг. 1, где происходит аналогичное разделение, катионы и анионы отводятся с пермеатом через прикатодные и прианодные мембраны 15 и 27 и по каналам для отвода прикатодного и прианодного пермеата 34 и 23 отводятся через штуцера для отвода прикатодного и прианодного пермеата 7 и 29 в виде оснований и кислот в зависимости от схемы подключения "минус" или "плюс", а ретентат выводится, минуя полимерную композицию 28, фиг. 1, 6, по каналу вывода разделяемого раствора 33, фиг. 1.

Исходный раствор, протекая по всем камерам разделения последовательно через весь межмембранный канал от одного диэлектрического фланца корпуса 3 до второго диэлектрического фланца корпуса 3, фиг. 1, очищается от катионов и анионов в зависимости от схемы подключения "минус" или "плюс", причем в прикатодном и прианодном пермеате содержатся различные растворенные газы, выделившиеся на монополярно-пористых пластинах электроде-катоде и электроде-аноде 14 и 30 соответственно в результате электрохимических реакций.

Под увеличенной способностью дифференцированного выделения прикатодного и прианодного пермеата понимается раздельное выделение катионов, анионов и газов, выделившихся на электродах в результате электрохимических реакций в отличие от аналога и прототипа.

Увеличение качества и эффективности разделения растворов, увеличение площади прикатодных и прианодных мембран в единице объема аппарата достигается за счет того, что прямоугольные переточные окна 19 чередующихся диэлектрических камер корпуса с "впадиной" и "выступом" 2 и 1, фиг. 1, 4, 5, всего аппарата выполнены увеличенной площади, причем общая площадь одного прямоугольного переточного окна 19 составляет Sпр.пер.окна=aдлина⋅bвысота.

Снижение гидравлического сопротивления в аппарате достигается за счет того, что межмембранный канал образован в тех местах, где расположена сетка-турбулизатор 13, фиг. 1, и где она отсутствует в прямоугольном переточном окне 19.

Предотвращение смещения сетки-турбулизатора 13, фиг. 4, от рабочей части поверхности прикатодных и прианодных мембран 15 и 27, фиг. 1, для создания равномерных гидродинамических условий при разделении в электробаромембранном аппарате осуществляется из-за того, что по внутреннему периметру прокладок 5 расположены центральные прямоугольные углубления величиной 0,5 мм, фиг. 1, 7, от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок 5 вставлены концы сеток-турбулизаторов 13, представляющих собой, фиг. 8, переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран

Назначение полимерной заливки 20, фиг. 4, 5, заключается в том, что в пространстве прямоугольного переточного окна 19 чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 1 и 2 образован межмембранный канал, который на всю ширину и высоту под прокладкой 5 и от прокладки 5 до прокладки 5 с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" 1 и 2 по другую залит полимерной заливкой 20, что предотвращает попадание исходного раствора, минуя прикатодные и прианодные мембраны 15 и 27, в пермеат.

Канал для отвода прикатодного пермеата 34 на диэлектрическом фланце корпуса 3, фиг. 1, оснащен диэлектрической сеткой 22 по всей площади, который расположен в тех же местах внутренней поверхности, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" 1 и 2, на которых расположены каналы для отвода прикатодного и прианодного пермеата 34, 23, фиг. 1, 4, 5, 6, оснащенные также диэлектрическими сетками по всей площади 22, а также имеющие отверстия 24, фиг. 4, 5, 6, для подвода электрических проводов 26 в зависимости от схемы подключения электродов "минус" или "плюс".

На разработанной конструкции электробаромембранного аппарата плоскокамерного типа без наложения электрического поля можно проводить баромембранные процессы, например обратный осмос, нанофильтрацию, ультрафильтрацию и микрофильтрацию.

Похожие патенты RU2622659C1

название год авторы номер документа
Электробаромембранный аппарат плоскокамерного типа 2018
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
RU2689617C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2013
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Казаков Вадим Геннадьевич
RU2528263C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2009
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Чепеняк Павел Александрович
  • Данилов Александр Юрьевич
  • Лазарев Константин Сергеевич
RU2403957C1
Электробаромембранный аппарат плоскокамерного типа 2019
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Луа Пепе
  • Котенев Сергей Игоревич
RU2718402C1
Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Коновалов Дмитрий Дмитриевич
  • Котенев Сергей Игоревич
RU2791794C1
Электробаромембранный аппарат плоскокамерного типа 2024
  • Коновалов Дмитрий Николаевич
  • Лазарев Сергей Иванович
  • Ломакина Виктория Александровна
  • Коновалов Дмитрий Дмитриевич
  • Долгова Ольга Валерьевна
  • Абоносимов Максим Олегович
RU2821449C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2017
  • Ковалева Ольга Александровна
RU2658410C1
Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Лазарев Дмитрий Сергеевич
  • Коновалов Дмитрий Дмитриевич
RU2806446C1
Электробаромембранный аппарат плоскокамерного типа 2021
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Кобелев Дмитрий Игоревич
RU2771722C1
Электробаромембранный аппарат плоскокамерного типа 2020
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Левин Александр Александрович
RU2744408C1

Иллюстрации к изобретению RU 2 622 659 C1

Реферат патента 2017 года ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа, состоящий из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типа выступ-впадина, отверстий для подвода электрических проводов, отличается тем, что чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" имеют прямоугольные переточные окна, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" по другую последовательно дренажные сетки, монополярно-пористые пластины электрод-катод и электрод-анод, пористые подложки из ватмана, прикатодные и прианодные мембраны соответственно до внешнего периметра прокладок, за исключением тех мест пористых подложек из ватмана, прикатодных и прианодных мембран, где расположены прямоугольные пластины вставки толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод и электрод-анод, по внутреннему периметру прокладок расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, в пространстве прямоугольного переточного окна чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" образован межмембранный канал, который на всю ширину и высоту под прокладкой и от прокладки до прокладки с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" по другую залит полимерной заливкой, межмембранный канал также образован в тех местах, где расположена сетка-турбулизатор, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами, электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной", на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов "минус" или "плюс". Технический результат - увеличение способности дифференцированного выделения прикатодного и прианодного пермеата, увеличение качества и эффективности разделения растворов, снижение гидравлического сопротивления в аппарате, увеличение площади прикатодных и прианодных мембран в единице объема аппарата, в предотвращение смещения сетки-турбулизатора от рабочей части поверхности. 8 ил.

Формула изобретения RU 2 622 659 C1

Электробаромембранный аппарат плоскокамерного типа, состоящий из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типа выступ-впадина, отверстий для подвода электрических проводов, отличающийся тем, что чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" имеют прямоугольные переточные окна, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" по другую последовательно дренажные сетки, монополярно-пористые пластины электрод-катод и электрод-анод, пористые подложки из ватмана, прикатодные и прианодные мембраны соответственно до внешнего периметра прокладок, за исключением тех мест пористых подложек из ватмана, прикатодных и прианодных мембран, где расположены прямоугольные пластины вставки толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод и электрод-анод, по внутреннему периметру прокладок расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, в пространстве прямоугольного переточного окна чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" образован межмембранный канал, который на всю ширину и высоту под прокладкой и от прокладки до прокладки с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" по другую залит полимерной заливкой, межмембранный канал также образован в тех местах, где расположена сетка-турбулизатор, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной", на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов "минус" или "плюс".

Документы, цитированные в отчете о поиске Патент 2017 года RU2622659C1

ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2013
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Казаков Вадим Геннадьевич
RU2528263C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2009
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Чепеняк Павел Александрович
  • Данилов Александр Юрьевич
  • Лазарев Константин Сергеевич
RU2403957C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2006
  • Лазарев Сергей Иванович
  • Вязовов Сергей Александрович
  • Рябинский Михаил Андреевич
RU2324529C2
МЕМБРАННЫЙ АППАРАТ 1990
  • Тахистов Ю.В.
  • Маркевич А.В.
  • Чижик Ю.Л.
  • Субботин В.В.
  • Дрейман Н.А.
  • Боброва Л.П.
  • Тимофеев С.В.
RU2032453C1
Устройство для измерения сварочного тока 1974
  • Таран Владимир Маркович
SU500505A1
US 4432858 A1, 21.02.1984.

RU 2 622 659 C1

Авторы

Ковалева Ольга Александровна

Лазарев Сергей Иванович

Ковалев Сергей Владимирович

Кочетов Виктор Иванович

Лазарев Дмитрий Сергеевич

Даты

2017-06-19Публикация

2016-05-04Подача