Электробаромембранный аппарат плоскокамерного типа Российский патент 2024 года по МПК B01D61/42 B01D61/18 B01D61/08 

Описание патента на изобретение RU2821449C1

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, машиностроительной, пищевой промышленности, аграрном секторе и т.п.

Аналогом данной конструкции является баромембранный аппарат, приведенный в работе Дытнерского Ю.И. «Обратный осмос и ультрафильтрация». М.: Химия, 1978 стр. 111, 197-200. Он представляет собой однокамерный аппарат, состоящий из пористого анода и катода, прианодной и прикатодной мембран. Недостатками являются: малая площадь разделения при высоких энергозатратах на процесс разделения. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат плоскокамерного типа, конструкция которого приведена в патенте RU 2791794 C1, 13.03.2023, Бюл. № 8. Прототип состоит из диэлектрических фланцев корпуса, металлических пластин, прокладок, отрицательной и положительной клемм устройства для подвода постоянного электрического тока, штуцеров для отвода прикатодного и прианодного пермеата, болтов, шайб и гаек, штуцеров ввода и вывода разделяемого раствора, диэлектрической сетки, фланцевой дренажной сетки, переточного окна, полимерного компаунда, двусторонних отверстий для подвода электрических проводов, каналов для отвода прикатодного и прианодного пермеата, полимерной композиции, каналов ввода и вывода разделяемого раствора, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, выполненных с полостью в виде малой камеры разделения под малые прикатодные и прианодные мембраны, на уплотнительной поверхности диэлектрических камер корпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая прикатодная подложка из ватмана и малая пористая прикатодная подложка из ватмана, пористая прианодная подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно, на диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются установленные на передней и задней стенке камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата соответственно, сетка-турбулизатор представляет собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, все соседние межузлия которой имеют насечки прямоугольной формы шириной 2 мм, кромки которых скошены на угол сорок пять градусов, глубина насечек составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прикатодным и прианодным мембранам соответственно, прямоугольных пластин вставок, полимерной заливки, по центру каждой малой камеры разделения установлен радиатор охлаждения с камерными штуцерами ввода и вывода охлаждающей жидкости.

Недостатками прототипа являются: низкая производительность и качество разделения растворов, малоэффективная турбулизация и охлаждение разделяемого (исходного) раствора, высокая концентрационная поляризация.

Технический результат выражается - повышением производительности и качества разделения растворов, высокоэффективной турбулизацией, охлаждением разделяемого (исходного) раствора, снижением эффекта концентрационной поляризации в малых камерах разделения за счет того, что аппарат состоит из диэлектрических фланцев корпуса, металлических пластин, прокладок, отрицательной и положительной клемм устройства для подвода постоянного электрического тока, штуцеров для отвода прикатодного и прианодного пермеата, болтов, шайб и гаек, штуцеров ввода и вывода разделяемого раствора, диэлектрической сетки, фланцевой дренажной сетки, переточного окна, полимерного компаунда, двусторонних отверстий для подвода электрических проводов, каналов для отвода прикатодного и прианодного пермеата, полимерной композиции, каналов ввода и вывода разделяемого раствора, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, выполненных с полостью в виде малой камеры разделения под малые прикатодные и прианодные мембраны, на уплотнительной поверхности диэлектрических камер корпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая прикатодная подложка из ватмана и малая пористая прикатодная подложка из ватмана, пористая прианодная подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно, на диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются установленные на передней и задней стенке камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата соответственно, сетка-турбулизатор представляет собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, все соседние межузлия которой имеют насечки прямоугольной формы шириной 2 мм, кромки которых скошены на угол сорок пять градусов, глубина насечек составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прикатодным и прианодным мембранам соответственно, прямоугольных пластин вставок, полимерной заливки, по центру каждой малой камеры разделения установлен радиатор охлаждения с камерными штуцерами ввода и вывода охлаждающей жидкости, отличающийся тем, что каждая малая камера разделения выполнена в форме полого цилиндра с установленным по центру торообразным радиатором охлаждения с переточными глобоидальными каналами, соединенным с камерными штуцерами ввода и вывода охлаждающей жидкости, расположенными по разные стороны на одной горизонтальной оси, камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата расположены по разные стороны в одной горизонтальной плоскости и симметрично относительно центральной вертикальной оси камер корпуса.

На фиг. 1 изображен электробаромембранный аппарат плоскокамерного типа, продольный разрез; фиг. 2 - вид сверху; фиг. 3 - вид слева; фиг. 4 - разрез А-А на фиг. 1; фиг. 5 - разрез Б-Б на фиг. 1; фиг. 6 - выносной элемент В (2:1) увеличенный, схема разделения в межмембранном канале на фиг. 1.

Электробаромембранный аппарат состоит из диэлектрических фланцев корпуса 1, металлических пластин 2, прокладок 3, отрицательной и положительной клемм устройства для подвода постоянного электрического тока 4, штуцеров для отвода прикатодного и прианодного пермеата 5, 6, болтов 7, шайб 8 и гаек 9, штуцеров ввода и вывода разделяемого раствора 10, 11, диэлектрической сетки 12, фланцевой дренажной сетки 13, переточного окна 14, полимерного компаунда 15, двусторонних отверстий 16 для подвода электрических проводов 17, каналов для отвода прикатодного и прианодного пермеата 18, 19, полимерной композиции 20, каналов ввода и вывода разделяемого раствора 21, 22, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 выполненных с полостью в виде малой камеры разделения 25 в форме полого цилиндра, высота которого равна толщине диэлектрической камеры корпуса с “выступом” и с “впадиной” 23 и 24 от одной ее стороны с уплотнительной поверхностью шип-паз до другой, диаметром равным диаметру малой прикатодной и прианодной мембран 26, 27 соответственно, под малые прикатодные и прианодные мембраны 26, 27, на уплотнительной поверхности диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 имеется углубление величиной 1 мм, для установки малой прокладки 28 круглой формы, уплотняющей периметр малой прикатодной и прианодной мембран 26, 27 соответственно, в месте установки дренажной сетки 29 с двух противоположных ее концов по плоской поверхности, установлены последовательно монополярно-пористые пластины электрод-катод 30 и малый электрод-катод 31, монополярно-пористые пластины электрод-анод 32 и малый электрод-анод 33 соответственно, пористая прикатодная подложка из ватмана 34 и малая пористая прикатодная подложка из ватмана 35, пористая прианодная подложка из ватмана 36 и малая пористая прианодная подложка из ватмана 37 соответственно, прикатодная мембрана 38 и малая прикатодная мембрана 26, прианодная мембрана 39 и малая прианодная мембрана 27 соответственно, на диэлектрических камерах корпуса с “выступом” и с “впадиной” 23 и 24 имеются установленные на передней и задней стенке камерные штуцера ввода исходного раствора 40 и вывода прианодного и прикатодного ретентата 41, 42 соответственно, которые расположены по разные стороны в одной горизонтальной плоскости и симметрично относительно центральной вертикальной оси камер корпуса с “выступом” и с “впадиной” 23 и 24, сетка-турбулизатор 43 представляет собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, все соседние межузлия которой имеют насечки прямоугольной формы шириной 2 мм, кромки которых скошены на угол сорок пять градусов, глубина насечек составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прикатодным и прианодным мембранам 38 и 39 соответственно, по центру каждой малой камеры разделения 25 установлен торообразный радиатор охлаждения 44 с переточными глобоидальными каналами, соединенный с камерными штуцерами ввода и вывода охлаждающей жидкости 45 и 46, расположенными по разные стороны на одной горизонтальной оси, прямоугольных пластин вставок 47, полимерной заливки 48.

Чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” 23 и 24, диэлектрические фланцы корпуса 1, штуцеры ввода и вывода разделяемого раствора 10, 11, диэлектрическая сетка 12, штуцеры для отвода прикатодного и прианодного пермеата 5, 6, камерные штуцеры ввода исходного раствора 40 и вывода прианодного и прикатодного ретентата 41, 42, радиатор охлаждения 44, камерные штуцеры ввода и вывода охлаждающей жидкости 45 и 46 могут быть изготовлены из капролона.

Монополярно-пористые пластины электрод-катод и малый электрод-катод 30 и 31, монополярно-пористые пластины электрод-анод 32 и малый электрод-анод 33 могут быть изготовлены из 20-45 процентного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ как и прямоугольные пластины вставки 47.

Сетки-турбулизаторы 43, представляющие собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран марок МК-40, МА-40, МК-40Л, МА-41И, МА-ИЛ, МБ-1, МБ-2.

Полимерная заливка 48, полимерный компаунд 15 и полимерная композиция 20 изготавливаются из диэлектрических герметизирующих эпоксидных смол, пластмассы или клея типа “холодная сварка”.

Фланцевая дренажная сетка 13, дренажная сетка 29 могут быть изготовлены из материала Х18Н9Т, Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, 08Х18Т1.

Прокладка 3 и малая прокладка 28 могут быть выполнены из паронита или прокладочной резины.

Металлические пластины 2 могут быть изготовлены из стали 3, стали 15, стали 25, стали 30, стали 45.

В качестве прикатодных, прианодных мембран 38, 39 и малой прикатодной, прианодной мембран 26, 27 могут применяться изготовленные в виде ленты, полотна мембраны следующих типов МГА-95, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, ESNA, УАМ-150П, УПМ-П, УПМ-ПП, УПМ-50, УПМ-50М, УФМ-100, УФМ-50, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН (ОФМН)-П, МФФК-0, МФФК-3, ММК, ММПА+, МПС, МФФК-Г, ММФ4, ММТ.

Аппарат работает следующим образом.

Исходный раствор под давлением, превышающем осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 10, расположенный на диэлектрическом фланце корпуса 1, фиг. 1, 2, 3, подается, минуя полимерную композицию 20 по каналу ввода разделяемого раствора 21, фиг. 1, в первую камеру разделения образованную прикатодной мембраной 38, прокладкой 3 по внутреннему периметру которой расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладки 3 вставлены концы сетки-турбулизатора 43, представляющей собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран соответственно, и прианодной мембраны 39, образуя, таким образом, межмембранный канал в тех местах, где расположена сетка-турбулизатор 43 и где она отсутствует в прямоугольном переточном окне 14.

В этот же момент времени к чередующимся диэлектрическим камерам корпуса с “выступом” и с “впадиной” 23 и 24, и диэлектрическим фланцам корпуса 1, фиг. 1, включением устройства для подвода постоянного электрического тока 4 через электрические провода 17, проходящих в отверстиях 16, которые залиты полимерным компаундом 15 и соединенных с дренажными сетками 13 и 29, к аппарату подводится внешнее постоянное электрическое поле с заданной плотностью тока.

Раствор, двигаясь, перемешивается при помощи сетки-турбулизатора 43 и поступает к прикатодной и прианодной мембранам 38 и 39 соответственно, фиг. 1, 6, в зависимости от схемы подключения “минус” или “плюс”.

Из образовавшейся между прикатодными, прианодными мембранами 38, 39, расположенными на диэлектрическом фланце корпуса 1 и диэлектрической камере корпуса с “впадиной” 24 и прокладкой 3 камеры разделения, фиг. 1, катионы и анионы, проникающие через прикатодную и прианодную мембраны 38 и 39, пористые прикатодные и прианодные подложки из ватмана 34 и 36, монополярно-пористые пластины электрод-катод и электрод-анод 30 и 32, фланцевые и дренажные сетки 13 и 29, уложенные последовательно друг на друге, проходят в пространстве между диэлектрическим фланцем корпуса 1 и монополярно-пористой пластиной электрод-катод 30 и в пространстве дренажной сетки 29 и по каналам для отвода прикатодного и прианодного пермеата 18 и 19 отводятся через штуцеры для отвода прикатодного и прианодного пермеата 5 и 6 в виде оснований, кислот и газа в зависимости от схемы подключения “минус” или “плюс”.

Оставшиеся в камере разделения анионы и катионы, движущиеся в ядре потока сетки-турбулизатора 43, фиг. 1, 6 переходят через прямоугольное переточное окно 14, фиг. 1, межмембранного канала увеличенной площади в диэлектрической камере корпуса с “впадиной” 24, в следующую (вторую) камеру разделения, образованную соединенными между собой диэлектрическими камерами корпуса с “выступом” и с “впадиной” 23 и 23, фиг. 1, и прикатодными и прианодными мембранами 38 и 39 соответственно в виде кислот, оснований и газа в зависимости от схемы подключения “минус” или “плюс”, при этом в пространстве прямоугольного переточного окна 14 чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 образован межмембранный канал, который на всю ширину и высоту под прокладкой 3 и от прокладки 3 до прокладки 3 с одной стороны чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 по другую залит полимерной заливкой 48.

Раствор переходит из первой камеры разделения во вторую камеру разделения и далее по всем камерам разделения через прямоугольные переточные окна 14 чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 всего аппарата, фиг. 1, где происходит аналогичное разделение, катионы и анионы отводятся с пермеатом через прикатодные и прианодные мембраны 38 и 39 и по каналам для отвода прикатодного и прианодного пермеата 18 и 19 отводятся через штуцеры для отвода прикатодного и прианодного пермеата 5 и 6 в виде оснований и кислот в зависимости от схемы подключения “минус” или “плюс”, а ретентат выводится минуя полимерную композицию 20, по каналу вывода разделяемого раствора 22, фиг. 1.

Одновременно с подачей исходного раствора под давлением, превышающем осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 10, расположенного на диэлектрическом фланце корпуса 1, фиг. 1, 2, 3, также подается исходный раствор под давлением, превышающем осмотическое давление растворенных в нем веществ через камерные штуцеры ввода исходного раствора 40, фиг. 2, 3, 4, 5, установленные на передней стенке диэлектрических камер корпуса с “выступом” и с “впадиной” 23 и 24 независимо для каждой диэлектрической камеры корпуса с “выступом” и с “впадиной” 23 и 24 и поступает в малые камеры разделения 25, при этом поток закручивается, двигаясь по внутренней поверхности камеры разделения 25 в форме полого цилиндра, перемешивается, проходя через переточные глобоидальные каналы торообразного радиатора охлаждения 44, установленного по центру каждой малой камеры разделения 25, фиг. 1, 4, 5, что снижает эффект концентрационной поляризации и улучшает турбулизацию разделяемого раствора. Катионы проникают через малые прикатодные мембраны 26, малые пористые прикатодные подложки из ватмана 35, малые монополярно-пористые пластины электрод-катод 31, а анионы проникают через малые прианодные мембраны 27, малые пористые прианодные подложки из ватмана 37, малые монополярно-пористые пластины электрод-анод 33 соответственно в пространстве дренажной сетки 29 и отводятся самотеком в виде оснований, кислот и газа по каналам для отвода прикатодного и прианодного пермеата 18, 19 соответственно предварительно объединяясь с потоками оснований, кислот и газа, образованных при разделении в основных камерах разделения в зависимости от схемы подключения “минус” или “плюс”. Отработанные растворы из малых камер разделения 25 каждой диэлектрической камеры корпуса с “выступом” и с “впадиной” 23 и 24 в виде прианодного и прикатодного ретентата выводятся через установленные на задней стенке камерные штуцеры вывода прианодного и прикатодного ретентата 41, 42 соответственно, фиг. 2, 3, 4, 5.

Исходный раствор, протекая по всем камерам разделения последовательно через весь межмембранный канал от одного диэлектрического фланца корпуса 1 до второго диэлектрического фланца корпуса 1, фиг. 1, очищается от катионов и анионов в зависимости от схемы подключения “минус” или “плюс”, причем в прикатодном и прианодном пермеате содержатся различные растворенные газы, выделившиеся на монополярно-пористых пластинах электроде-катоде и электроде-аноде 30 и 32 соответственно в результате электрохимических реакций.

Одновременно с подачей разделяемого раствора через камерные штуцеры ввода охлаждающей жидкости 45 подается охлаждающий агент (например, водопроводная вода), заполняя торообразные радиаторы охлаждения 44 с большой площадью поверхности во всех малых камерах разделения 25, фиг. 1, отводя избыток тепла от разделяемого раствора, снижая при этом температурную нагрузку на малые прианодные и прикатодные мембраны 27, 26, и выводится через камерные штуцеры вывода охлаждающей жидкости 46, фиг. 4, 5.

Повышение производительности и качества разделения растворов, высокоэффективная турбулизация, охлаждение разделяемого (исходного) раствора и снижение эффекта концентрационной поляризации в малых камерах разделения, фиг. 1, 4, 5, достигается за счет того, что каждая малая камера разделения выполнена в форме полого цилиндра с установленным по центру торообразным радиатором охлаждения с переточными глобоидальными каналами, соединенным с камерными штуцерами ввода и вывода охлаждающей жидкости, расположенными по разные стороны на одной горизонтальной оси, камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата расположены по разные стороны в одной горизонтальной плоскости и симметрично относительно центральной вертикальной оси камер корпуса.

На разработанной конструкции электробаромембранного аппарата плоскокамерного типа без наложения электрического поля можно проводить баромембранные процессы, например обратный осмос, нанофильтрацию, ультрафильтрацию и микрофильтрацию.

Похожие патенты RU2821449C1

название год авторы номер документа
Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Коновалов Дмитрий Дмитриевич
  • Котенев Сергей Игоревич
RU2791794C1
Электробаромембранный аппарат плоскокамерного типа 2021
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Кобелев Дмитрий Игоревич
RU2771722C1
Электробаромембранный аппарат плоскокамерного типа 2019
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Луа Пепе
  • Котенев Сергей Игоревич
RU2718402C1
Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Лазарев Дмитрий Сергеевич
  • Коновалов Дмитрий Дмитриевич
RU2806446C1
Электробаромембранный аппарат плоскокамерного типа 2018
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
RU2689617C1
Электробаромембранный аппарат плоскокамерного типа 2020
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Левин Александр Александрович
RU2744408C1
Электробаромембранный аппарат плоскокамерного типа 2023
  • Ковалев Сергей Владимирович
  • Ковалева Ольга Александровна
  • Седоплатов Иван Сергеевич
RU2820720C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2016
  • Ковалева Ольга Александровна
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Кочетов Виктор Иванович
  • Лазарев Дмитрий Сергеевич
RU2622659C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2017
  • Ковалева Ольга Александровна
RU2658410C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2009
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Чепеняк Павел Александрович
  • Данилов Александр Юрьевич
  • Лазарев Константин Сергеевич
RU2403957C1

Иллюстрации к изобретению RU 2 821 449 C1

Реферат патента 2024 года Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа, в котором каждая малая камера разделения выполнена в форме полого цилиндра с установленным по центру торообразным радиатором охлаждения с переточными глобоидальными каналами, соединенным с камерными штуцерами ввода и вывода охлаждающей жидкости, расположенными по разные стороны на одной горизонтальной оси, камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата расположены по разные стороны в одной горизонтальной плоскости и симметрично относительно центральной вертикальной оси камер корпуса. Технический результат выражается - повышением производительности и качества разделения растворов, высокоэффективной турбулизацией, охлаждением разделяемого раствора, снижением эффекта концентрационной поляризации в малых камерах разделения. 6 ил.

Формула изобретения RU 2 821 449 C1

Электробаромембранный аппарат плоскокамерного типа, состоящий из диэлектрических фланцев корпуса, металлических пластин, прокладок, отрицательной и положительной клемм устройства для подвода постоянного электрического тока, штуцеров для отвода прикатодного и прианодного пермеата, болтов, шайб и гаек, штуцеров ввода и вывода разделяемого раствора, диэлектрической сетки, фланцевой дренажной сетки, переточного окна, полимерного компаунда, двусторонних отверстий для подвода электрических проводов, каналов для отвода прикатодного и прианодного пермеата, полимерной композиции, каналов ввода и вывода разделяемого раствора, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, выполненных с полостью в виде малой камеры разделения под малые прикатодные и прианодные мембраны, на уплотнительной поверхности диэлектрических камер корпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая прикатодная подложка из ватмана и малая пористая прикатодная подложка из ватмана, пористая прианодная подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно, на диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются установленные на передней и задней стенках камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата соответственно, сетка-турбулизатор представляет собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, все соседние межузлия которой имеют насечки прямоугольной формы шириной 2 мм, кромки которых скошены на угол сорок пять градусов, глубина насечек составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прикатодным и прианодным мембранам соответственно, прямоугольных пластин вставок, полимерной заливки, по центру каждой малой камеры разделения установлен радиатор охлаждения с камерными штуцерами ввода и вывода охлаждающей жидкости, отличающийся тем, что каждая малая камера разделения выполнена в форме полого цилиндра с установленным по центру торообразным радиатором охлаждения с переточными глобоидальными каналами, соединенным с камерными штуцерами ввода и вывода охлаждающей жидкости, расположенными по разные стороны на одной горизонтальной оси, камерные штуцеры ввода исходного раствора и вывода прианодного и прикатодного ретентата расположены по разные стороны в одной горизонтальной плоскости и симметрично относительно центральной вертикальной оси камер корпуса.

Документы, цитированные в отчете о поиске Патент 2024 года RU2821449C1

Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Лазарев Дмитрий Сергеевич
  • Коновалов Дмитрий Дмитриевич
RU2806446C1
Электробаромембранный аппарат плоскокамерного типа 2020
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Левин Александр Александрович
RU2744408C1
Электробаромембранный аппарат плоскокамерного типа 2019
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Луа Пепе
  • Котенев Сергей Игоревич
RU2718402C1
Электробаромембранный аппарат плоскокамерного типа 2018
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
RU2689617C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2016
  • Ковалева Ольга Александровна
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Кочетов Виктор Иванович
  • Лазарев Дмитрий Сергеевич
RU2622659C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2013
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Казаков Вадим Геннадьевич
RU2528263C1
WO 2018036612 A1, 01.03.2018.

RU 2 821 449 C1

Авторы

Коновалов Дмитрий Николаевич

Лазарев Сергей Иванович

Ломакина Виктория Александровна

Коновалов Дмитрий Дмитриевич

Долгова Ольга Валерьевна

Абоносимов Максим Олегович

Даты

2024-06-24Публикация

2024-01-25Подача