Изобретение относится к радиолокации, а именно к установкам для измерения статических радиолокационных характеристик целей, преимущественно для измерения эффективной поверхности рассеяния (ЭПР).
Известна измерительная установка для измерения ЭПР радиолокационных целей в дальней зоне [1]. Установка содержит радиолокационную станцию (РЛС) с приемной и передающей синфазными антеннами и устройство крепления целей в измерительной зоне, расположенной в дальней зоне антенн.
Общие признаки аналога и изобретения: РЛС с антенной и устройство крепления целей в измерительной зоне, расположенной в дальней зоне антенн.
Для соблюдения условия измерения ЭПР цели в дальней зоне синфазной антенны минимальная дальность R должна удовлетворять равенству [1]
где R - минимально необходимое расстояние от антенн до цели (дальность);
ψ - расфазировка - отставание фаз поля на краях апертуры цели, как вторичного излучателя, по отношению к фазе поля в ее центре;
L - максимальный размер апертуры цели;
λ - длина волны поля излучения антенны.
При дальности меньше чем R, расфазировка падающего поля на апертуре цели приводит к погрешностям измерения ЭПР. Для того чтобы погрешность измерения синфазной антенной не превышала 2 дБ, расфазировка ψ на апертуре цели не должна превышать π/8, при этом параметр p будет равен двум [1]. В этом случае при измерении ЭПР цели синфазной антенной минимально необходимая дальность определяется по формуле
Известен радиоизмерительный комплекс (ЭРИК), принятый за прототип изобретения, предназначенный для измерения ЭПР целей в дальней зоне синфазных антенн [2]. Комплекс содержит шесть радиолокационных станций (РЛС) с приемно-передающими зеркальными синфазными антеннами и устройство для крепления целей в измерительной зоне, которое расположено в дальней зоне синфазных антенн на расстоянии 780 м. Цель подвешивается на высоте 30 м на стропах, закрепленных на несущем тросе, натянутом между концами двух стальных мачт, высотой 72 м. Дальность до устройства подвески целей была определена по критерию дальности (2).
Общие признаки прототипа и изобретения: РЛС с приемно-передающей антенной и устройство крепления цели в измерительной зоне установки, расположенной в дальней зоне антенны.
Задачей изобретения является разработка конструкции приемно-передающей антенны с оптимальными параметрами, обеспечивающими на апертуре цели поле с амплитудным распределением поля с допустимой относительной неоднородностью на минимальной дальности и увеличение чувствительности РЛС установки, при прочих равных условиях измерения: мощности передатчика РЛС, пороге чувствительности приемника РЛС, одинаковых размерах апертур оптимальной и синфазной антенны и длине волны поля излучения.
Технический результат изобретения - уменьшение дальности при измерении ЭПР целей в дальней зоне и увеличение чувствительности РЛС установки путем оптимальной расфазировки апертуры приемно-передающей антенны.
Изобретение поясняется чертежами.
Фиг. 1а, б. Диаграммы направленности антенны в E плоскости с синфазной прямоугольной апертурой а) и несинфазной б), с квадратичным изменением фаз поля 2π, где обозначено: к - волновое число; в - размер апертуры антенны в E плоскости; θ - угол, образованный электрической осью антенны и линией визирования точки наблюдения на апертуре цели, лежащей в плоскости E.
Фиг. 2а, б, в. Графики зависимости параметра pE от расфазировки ϕE поля на квадратной апертуре антенны, при значениях отношения размеров апертур антенны и цели в/LE: 0,5 (а), 1,0 (б) и 1,5 (в) и максимальных относительных амплитудных неоднородностей поля на апертуре цели δAE: 0,5; 1,0, 1,5 и 2,0 дБ.
Фиг. 3а, б. Графики зависимости удельных коэффициентов усиления GH⋅λ/в и GE⋅λ/a несинфазной антенны с квадратной апертурой от расфазировок ϕH и ϕE поля в апертуре антенны, для разных размеров апертуры в длинах волн λ в H (а) и E (б) плоскостях.
Фиг. 4а, б, в, г. Графики относительного порога чувствительности РЛС установки Q при максимальной относительной амплитудной неоднородности δA: 0,5 дБ (а), 1,0 дБ (б), 1,5 дБ (в) и 2,0 дБ (г) и значении отношения апертур антенны и цели а/LH: 0,5; 1,0 и 1,5, в зависимости от размера апертуры а антенны в длинах волн. На оси ординат фиг. 4а шкала выполнена логарифмической.
Фиг. 5. Графики зависимости относительного порога чувствительности РЛС установки с несинфазной антенной от максимальной относительной амплитудной неоднородности δA на апертуре цели для разных отношений в/LE. На оси ординат шкала Q логарифмическая.
Фиг. 6. Продольный разрез несинфазной рупорной антенны. На фигуре введены обозначения: r - длина рупора; в - размер квадратной апертуры антенны; ϕ - расфазировка поля на краю апертуры антенны.
Фиг. 7. Структурная схема измерительной установи по изобретению. На фигуре введены обозначения: 1 - РЛС; 2 - несинфазная антенна; 3 - мачта устройства крепления цели 5; 4 - поворотное устройство; 6 - стропы.
Фиг. 8. Таблица 1, где обозначено: LE - размер апертуры цели в E плоскости; λ - длина волны поля; a/LE - отношение размеров апертур антенны и цели в E плоскости; δA - максимальная относительная амплитудная неоднородность поля на апертуре цели; pE - параметр пропорциональный дальности при измерении ЭПР цели, при заданных значениях LE, λ, a/LE, δA; R - дальность соответствующая значению параметра p; Q - порог относительной чувствительности РЛС установки с несинфазной и синфазной антенной; 1/Q - относительная чувствительность РЛС установки с несинфазной и синфазной антенной.
Технический результат изобретения достигается благодаря тому, что установка содержит РЛС 1 с приемно-передающей оптимальной несинфазной антенной 2, устройство для крепления цели в измерительной зоне, распложенной в дальней зоне антенны (фиг. 7).
РЛС 1 содержит передатчик, выход которого соединен с входом-выходом приемно-передающей антенны, устройство разделения передаваемых и принимаемых импульсов и приемник, вход которого соединен с выходом-входом приемно-передающей антенны.
Приемно-передающая антенна 2 выполнена оптимальной несинфазной, с отставанием фаз поля на краях апертуры по отношению к фазе поля на электрической оси антенны в пределах трех ÷ четырех радиан (фиг. 6)
Устройство крепления цели 5 выполнено в виде двух мачт 3, поворотного устройства 4 и строп 6 крепления цели.
Известно [3], что диаграмма направленности (ДН) несинфазной антенны шире ДН синфазной с одинаковыми размерами апертур (фиг. 1а, б).
При одинаковых максимальных неоднородностях амплитуды падающего поля на апертуре цели, созданного несинфазной и синфазной антеннами, определим уменьшение дальности, при измерении ЭПР несинфазными антеннами, путем сравнения пороговых значений ЭПР РЛС с такими антеннами.
На основании уравнения радиолокации [4] запишем выражение для порога чувствительности РЛС в значениях ЭПР, обеспечивающего его максимальную чувствительность
где - порог чувствительности приемника РЛС в значениях ЭПР;
q - порог чувствительности приемника РЛС (Вт);
qo - мощность поля в радиоимпульсе (Вт);
R - дальность;
G - коэффициент усиления антенны;
λ - длина волны поля, излучаемого антенной.
Чувствительность РЛС в значениях ЭПР обратно пропорциональна порогу чувствительности РЛС.
На основании формулы (3) запишем формулу для расчета относительного порога чувствительности Q РЛС с несинфазной и синфазной антеннами
где индексом «нс» снабжены величины, относящиеся к несинфазным антеннам, а индексом «с» - к синфазным.
Коэффициент усиления несинфазной антенны Gнс меньше коэффициента усиления синфазной Gc, что приводит к увеличению порога чувствительности РЛС, а уменьшение дальности Rнс уменьшает порог. Степени отношения величин Rнс4/Gнс2 в формуле (4) разные, поэтому должна существовать оптимальная расфазировка поля в апертуре несинфазной антенны, которая при уменьшении Rнс и Gнс уменьшит порог чувствительности и увеличит чувствительность РЛС.
В приближении Кирхгофа рассчитаем диаграмму направленности рупорной антенны с прямоугольной апертурой. Запишем выражение для поля излучения в ее дальней зоне в H и E плоскостях, с полем двойной кривизны в апертуре антенны [4]
x и y - координаты точки на апертуре антенны;
а и в - размеры прямоугольной апертуры антенны в H и E плоскостях;
и - расстояния от фазовых центров источников облучения до краев апертуры.
Величины и связаны с размерами сторон апертуры антенны а и в и квадратичными расфазировками и поля на ее краях в H и E плоскостях выражениями аналогичными (1)
Известно [3], что в дальней зоне выражения для полей в H и E плоскостях имеют вид
где
где
В этих выражениях обозначено
A=i(1+cosθ)/2λR⋅expiкR.
к - волновое число равное 2π/λ.
C(α) и S(α) - интегралы Френеля, определяемые по формулам
C(α)=∫cos(πt2/2)dt.
S(α)=∫sin(πt2/2)dt, пределы интегрирования от 0 до α.
R, θ, ξ - сферические координаты точки наблюдения.
Выражения, стоящие в фигурных скобках формул (9) и (10), являются диаграммами направленности (ДН) рупорных антенн и в H и E плоскостях и с учетом формул (7) и (8) будут иметь вид
Для определения дальности, при которой относительные неоднородности амплитуды поля на апертуре цели не будут превышать заданных, введем в выражения (11) и (12) явную зависимость расфазировок и поля на краях апертуры цели в H и E плоскостях. Дальность и расфазировки и поля на апертуре цели с размерами и в H и E плоскостях связаны формулами, аналогичными (7) и (8)
Углы и , под которыми видны края апертуры цели в H и E плоскостях из фазового центра антенны, связаны с дальностями , и размерами , соотношениями
Подставим в эти выражения значения дальностей из (13) и (14), получим
Из формул (13) и (14) следует, что величины и связаны с расфазировками и поля на апертуре цели соотношениями
Подставим значения углов и в выражения (11) и (12) и определим квадраты модулей этих выражений. После громоздких преобразований окончательно получим
где
где
Максимальные относительные амплитудные неоднородности поля δAH и δAE в дальней зоне несинфазной антенны на апертуре цели в плоскостях H и E определяются из уравнений
Уравнения (24) и (25) устанавливают зависимости максимальных относительных неоднородностей амплитудного распределения поля на апертуре цели в функции дальности, расфазировок поля в апертурах антенны и цели и относительных размеров их апертур.
Для ДН антенн с квадратной апертурой формула (25) в E плоскости, в которой поле однородно по амплитуде, устанавливает более жесткие требования к дальности, чем формула (24) для H плоскости, где амплитуда поля уменьшается к краю апертуры. Поэтому только для плоскости E были рассчитаны графики зависимости параметра , характеризующего допустимую минимальную дальность при измерении ЭПР цели, в зависимости от расфазировки поля в апертуре антенны, при разных максимальных относительных амплитудных неоднородностях поля δAE на апертуре цели, и отношении размеров апертур антенны и цели a/L. Графики таких зависимостей приведены на фиг. 2а, б, в.
Из графиков следует, что при заданных значениях величин a/LE и δAE, при квадратичной расфазировке поля в апертуре антенны параметр меньше, чем для синфазной апертуры при всех значениях относительной амплитудной неоднородности δAE, следовательно, уменьшается дальность при измерении ЭПР цели, по сравнению с синфазной антенной. Наименьшее значение параметра обеспечивается при расфазировке поля в апертуре антенны от трех до четырех радиан, поэтому такую расфазировку назовем оптимальной.
Для определения порога чувствительности РЛС с несинфазной антенной рассчитаны удельные коэффициенты усиления прямоугольной апертуры GHλ⋅/в и GE⋅λ/a, в зависимости от расфазировок и поля в апертуре, по формулами
где
где
По формулам (26) и (27) рассчитаны значения удельных коэффициентов усиления антенн в зависимости от расфазировок и поля в апертуре антенны для четырех размеров: 5λ, 10λ, 15λ, 20λ. Графики удельных коэффициентов усиления несинфазной антенны с прямоугольной апертурой, в зависимости от расфазировок и полей в апертуре, приведены на фиг. 3а, б.
По значениям удельных коэффициентов усиления коэффициента усиления антенны [3] рассчитывают по формуле
Зависимость относительного порога чувствительности Q РЛС с несинфазной и синфазной антенной определяют по формуле
где индексом «нс» снабжены величины, относящиеся к несинфазным антеннам, а индексом «с» - к синфазным. Формула (29) получена из формулы (4) путем замены отношения Rнс/Rc на тождественное отношение рнс/рс.
Графики относительного порога чувствительности Q РЛС для разных значений максимальной относительной амплитудной неоднородности δА на апертуре цели и отношении апертуры антенны и цели в/LE, в зависимости от размеров апертуры антенны в длинах волн, приведены на фиг. 4а, б, в, г.
Из графиков фиг. 4а, б, в, г видно, что относительный порог чувствительностей полигонов РЛС Q зависит от относительных размеров апертуры антенны и цели в/LE и максимальной относительной амплитудной неоднородности δA на апертуре цели и не зависит от размеров апертуры антенны в длинах волн.
Зависимости относительного порога чувствительностей Q РЛС от амплитудной неоднородности поля δA для разных отношений апертур антенн и целей а/LH сведены в графики фиг. 5, из которых видно, что для допустимой относительной амплитудной неоднородности поля δA на апертуре цели равной 1,2 дБ отсутствует зависимость порога чувствительности Q от относительного размера апертур антенны и цели. В этом случае чувствительность РЛС с несинфазной антенной на 8 дБ больше, чем с синфазной, и в 2 раза меньше дальность и габариты установки.
Оптимальным отношением размеров апертур антенны и цели в/LE, при амплитудной неоднородности поля δA на апертуре цели меньше 1,2 дБ, является антенна с апертурой меньше апертуры цели, а для значений δA больше 1,2 дБ, равенство апертур.
Из графиков фиг. 4 и 5 следует, что для антенны с оптимальной расфазировкой поля на ее апертуре, при отношении в/LE равном единице и меньше, относительный порог чувствительности Q РЛС меньше единицы, следовательно, уменьшается дальность и габариты установки и увеличивается чувствительность РЛС. Несинфазная антенна, с оптимальной расфазировкой поля в апертуре в пределах 3÷4 радиан, увеличивает чувствительность РЛС на 6÷13 дБ и уменьшает дальность и габариты установки в 1,5÷2 раза, в сравнении с синфазной антенной.
При необходимости увеличения габаритов измеряемых целей на существующих установках синфазные антенны необходимо заменить на оптимальные несинфазные антенны.
На проектируемых установках, с целью уменьшения стоимости и эксплуатационных расходов, целесообразно на РЛС применять оптимальные антенны.
Алгоритм определения параметров установки с оптимальной антенной.
По заданным Заказчиком величинам:
- максимальному размеру L апертуры цели, например, 20λ;
- значению максимальной амплитудной неоднородности поля δA на апертуре цели, например, 0,5 дБ, определяют следующее.
1. Оптимальное отношение размеров апертур антенны и цели в/L, при δA меньше 1,2 дБ, равно 0,5 (фиг. 5 прямая в/L=0,5).
2. Значение относительного порога чувствительности Q РЛС установки при δA=0,5 и в/L=0,5 отсчитывают на оси ординат фиг. 5, которое равно 0,05.
3. По кривой δA=0,5 графика рис. 2а на оси абсцисс отсчитывают значение оптимальной расфазировки в апертуре несинфазной антенны , которое равно четырем радианам, а на оси ординат отсчитывают значение параметра , которое равно 0,3.
4. По значению параметра по формуле (14) рассчитывают дальность R, которая равна 120λ.
Пример реализации изобретения
Оптимальная антенна с расфазировкой поля на ее апертуре в пределах 3÷4 радиан или (0,9÷1,3)π может быть выполнена, например, в виде несинфазной рупорной антенны или зеркальной антенны путем дефоксировки облучателя.
Определим размеры оптимальной рупорной антенны, обеспечивающей расфазировку поля в апертуре в пределах 3÷4 радиан.
Известно [3], что для рупорной антенны с квадратной апертурой расфазировка поля в апертуре определяется по формуле
где в - размер апертуры рупорной антенны;
r - длина рупора;
λ - длина волны поля излучения.
Путем алгебраического преобразования формулы (30) получим формулу для расчета размера апертуры рупорной антенны при расфазировке ϕ поля в апертуре, находящейся в пределах (0,9÷1,3)π, которая имеет вид
где n - число длин волн укладывающихся на длине рупора (r=nλ).
По формуле (31) рассчитан размер апертуры рупорной антенны при длине рупора, равной 20λ, и длине волны поля λ, равной 3 см (r=20 λ=60 см). При этих условиях размер апертуры рупорной антенны должен находиться в пределах 26÷31 см.
В таблице 1 (фи. 8) приведены параметры установки с синфазной и несинфазной антеннами, из которой видно, что измерение ЭПР оптимальной антенной увеличивает чувствительность РЛС установки на 10,5 дБ и уменьшает дальность в 3 раза.
Технический результат изобретения достигнут.
Отличительные признаки изобретения
Антенна выполнена несинфазной, с отставанием фаз поля на краях апертуры, по отношению к фазе поля в ее центре, находящимся в пределах 3÷4 радиан. Кроме того, наибольший размер прямоугольной апертуры рупорной антенны с расфазировкой поля в апертуре, находящейся в пределах 3÷4 радиан, определяют по формуле
где в - наибольший размер прямоугольной апертуры рупорной антенны;
λ - длина волны поля излучения;
n - количество длин волн, укладывающихся на длине рупора.
Литература
[1] - Майзельс Е.Н., Торгованов В.А. Измерение характеристик рассеяния радиолокационных целей. М., Советское радио, стр. 86 и 167. 1972.
[2] - Патент RU №2225621 на изобретение «Устройство крепления эталонного отражателя в виде металлической сферы», фиг. 8, 2002.
[3] - Фрадин А.З. Антенны сверхвысоких частот. М., Советское радио, стр. 84, 128, 134. 1957.
[4] - Радиолокационная техника. М., Советское радио, стр. 26. 1949. Перевод с английского.
Установка для измерения эффективной поверхности рассеяния радиолокационных целей в дальней зоне антенны содержит РЛС с приемно-передающей несинфазной антенной и устройство для крепления цели в дальней зоне антенны. Причем отставание фаз поля на краях апертуры несинфазной антенны по отношению к фазе поля в ее центре находится в пределах 3÷4 радиан. Технический результат изобретения по сравнению с измерением ЭПР целей синфазной антенной - уменьшение дальности и габаритов установки в 1,5-2 раза и увеличение чувствительности РЛС установки на 7-13 дБ. 1 з.п. ф-лы, 8 ил.
1. Установка для измерения эффективной поверхности рассеяния радиолокационных целей в дальней зоне антенны, содержащая радиолокационную станцию с приемно-передающей антенной и устройство для крепления цели в дальней зоне антенны, отличающаяся тем, что антенна выполнена несинфазной, с отставанием фаз поля на краях апертуры по отношению к фазе поля в ее центре, находящимся в пределах 3÷4 радиан.
2. Установка для измерения эффективной поверхности рассеяния радиолокационных целей в дальней зоне антенны по п. 1, отличающаяся тем, что наибольший размер прямоугольной апертуры рупорной антенны с расфазировкой поля в апертуре, находящейся в пределах 3÷4 радиан, определяют по формуле
где в - наибольший размер прямоугольной апертуры рупорной антенны;
λ - длина волны поля излучения;
n - количество длин волн, укладывающихся на длине рупора.
RU2225621 C2, 10.03.2004 | |||
Т.А | |||
Ясова | |||
Эффективная поверхность рассеяния, применимость и возможность ее определения для сложных целей | |||
Новые информативные технологии в автоматизированных системах | |||
Федеральное гос.автон.учреждение высщего образования "Национальный исследовательский университет "Высшая школа экономики" | |||
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
стр | |||
Аппарат для передачи фотографических изображений на расстояние | 1920 |
|
SU170A1 |
МАЙЗЕЛЬС Е.Н | |||
и др | |||
Измерение характеристик рассеяния радиолокационных целей | |||
- М.: Советское радио, 1972, с.138-143 | |||
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ЭЛЕМЕНТОВ МАТРИЦЫ РАССЕЯНИЯ (ВАРИАНТЫ) | 2006 |
|
RU2331896C1 |
US4821039 A, 11.04.1989. |
Авторы
Даты
2017-06-22—Публикация
2016-04-11—Подача