Изобретение относится к области радиолокации и предназначено для измерения эффективной площади рассеяния (ЭПР) радиолокационных целей.
Преимущественная область использования изобретения - на модельных полигонах при измерении ЭПР радиолокационных целей. Такие полигоны целесообразно применять на предприятиях, разрабатывающих цели по технологии «Стеле», как измерительное средство для измерения ЭПР моделей целей, в процессе их разработки.
Известно устройство для измерения эффективной площади рассеяния (Патент РФ №2063641 на изобретение «Устройство для измерения эффективной площади рассеяния», 1992 г.). Устройство содержит: передатчик, приемник, направленный ответвитель, комплексную нагрузку, приемно-передающую антенну и опору.
Общие признаки аналога и изобретения: передатчик, приемник, разделитель приемного и передающего сигналов, переменная комплексная нагрузка, приемно-передающая антенна и опора модели цели.
Аналог не позволяет подавлять когерентную помеху, вызванную отражением падающего поля от опоры модели.
Известно устройство для измерения ЭПР целей, принятое за прототип изобретения (Авт. св. СССР №1536326 на изобретение «Устройство для измерения характеристик радиолокационного рассеяния объекта», 1987 г.), которое содержит: передатчик, приемник, двойной волноводный тройник, переменную комплексную волноводную нагрузку, направленный ответвитель, приемно-передающую антенну, приемную антенну, фазовращатель, переменный аттенюатор и опору модели цели. Приемная антенна, принимающая отраженный от опоры сигнал, имеет диаграмму направленности (ДН) по «нулям» в два раза уже ДН приемно-передающей антенны, которая принимает отраженный от модели и опоры сигнал. Сигнал с выхода приемной антенны находится в противофазе с сигналом от опоры, который принимает приемно-передающая антенна, и тем самым происходит их взаимная компенсация. Известно, что антенна имеет диаграмму направленности (ДН) с боковыми лепестками, которые направлены на цель. Амплитуда первого бокового лепестка ДН на 17 дБ меньше амплитуды ее основного лепестка. Сигнал цели на 30-40 дБ больше сигнала, отраженного от опоры, поэтому часть сигнала модели цели, принимаемого приемной антенной по боковому лепестку, в приемнике будет в противофазе сигналу модели цели, поэтому уменьшает истинное значение ЭПР модели, что является недостатком прототипа. Кроме того, прототип имеет две антенны, что усложняет его конструкцию и способ измерения.
Общие признаки прототипа и изобретения: передатчик, приемник, двойной волноводный тройник, комплексная переменная нагрузка, приемно-передающая антенна, электрические связи между ними и опора модели цели.
Техническим результатом изобретения является увеличения точности измерения ЭПР моделей целей за счет подавления когерентной помехи, вызванной отражением падающего поля от опоры модели цели.
Изобретение поясняется чертежами.
На фиг. 1 представлена структурная схема измерительной установки по изобретению, а) вид на опоры сбоку, б) вид на опоры сверху.
На фигуре введены обозначения: 1 - передатчик; 2 - двойной волноводный тройник, Е и Н плечи в ортогональных плоскостях; 3 - переменная комплексная нагрузка (КСН); 4 - приемник; 5 - приемно-передающая антенна (ППА); 6 - опора цели; 7 - компенсационная опора; 8 - устройство крепления опор, как единое целое; 9 - эталонный отражатель или модель цели.
Предпосылки изобретения
Опора находится на одной дальности с моделью, поэтому не может быть разрешена по дальности. Подавить помеху, вызванную отражением от поры падающего поля, можно только путем ее компенсации. Для того чтобы скомпенсировать помеху полностью, надо ввести в измерительную зону установки вторую компенсационную опору, тождественную опоре модели цели. Компенсационную опору устанавливают в измерительной зоне установки на платформе жестко, как единое целое с опорой модели, параллельно ей, на расстоянии больше диаметра опор со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны λ падающего поля - (2m-1)⋅λ/4, где m - натуральные числа.
Технический результат изобретения достигается благодаря тому, что установка для измерения эффективной площади рассеяния радиолокационных целей на моделях содержит (фиг. 1): передатчик 1, приемник 4, двойной волноводный тройник 2, комплексную переменную нагрузку 3, приемно-передающую антенну 5, опору модели 6 и компенсационную опору 7. Компенсационную опору выполняют тождественно опоре модели, ее устанавливают в измерительной зоне полигона на платформе жестко, как единое целое с опорой модели цели, параллельно опоре модели, на расстоянии больше диаметра опор со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны падающего на модель поля. Причем выход передатчика 1 соединяют с входом основного Н плеча волноводного тройника 2, один выход которого соединяют с входом антенны, а другой соединяют с входом-выходом переменной нагрузки 3, кроме того, выход Е плеча волноводного тройника соединяют с входом приемника 4.
Конструктивное выполнение функциональных устройств
Передатчик 1 предназначен для генерирования СВЧ сигналов (ГГц) и может быть выполнен на транзисторах со стабилизацией частоты и амплитуды электрических колебаний.
Двойной тройник 2 предназначен для разделения излучаемых и принимаемых сигналов и выполнен в виде комбинации Т-образного соединения в плоскости Е (вертикальной) и в плоскости Н (горизонтальной), известно, что его плечи в Е и Н плоскостях развязаны (Дж. К. Саусворт «Принципы и применение волноводной передачи». М., Советское радио, 1955 г. стр. 358).
Переменная комплексная нагрузка (КСН) 3 предназначена для компенсации отражений от входа антенны 5 и суммарной когерентной помехи, вызванной отражениями от функциональных местных предметов, облучаемых боковыми лепестками диаграммы направленности передающей антенной, выполнена волноводной и имеет плавную и независимую регулировку амплитуды и фазы ее коэффициента отражения (Авт. св. СССР №452048, «Волноводная нагрузка», 1973).
Приемник 5 предназначен для измерения сигналов модели цели и может быть выполнен в виде амплифазометра (Авт. св. СССР №302810 на изобретение, 1969 г.).
Приемно-передающая антенна 5 может быть выполнена в виде волноводного рупора, с малым уровнем боковых лепестков (Патент РФ №2332759 на изобретение «Рупорный излучатель», 2006 г.).
Опоры 6 и 7 могут быть выполнены в виде прямого или гофрированного цилиндра из диэлектрика и установлены в измерительной зоне полигона (Авт. св. СССР №452048 на изобретение «Диэлектрическая опора модели», 1973 г.).
Компенсационную опору 7 устанавливают в измерительной зоне полигона жестко, как единое целое с опорой модели цели и параллельно с опоре цели, на расстоянии больше диаметра опоры со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны λ падающего поля - (2m-1)⋅λ/4, где m - натуральные числа. Обе опоры 6 и 7 крепят жестко на платформе 8.
Эталонный отражатель 9 предназначен для градуировки шкалы приемника 4 в дБ, может быть выполнен в виде металлического шара, ЭПР которого равна πr2, где r - радиус шара.
Соединения электрических элементов схемы установки
Выход передатчика 1 соединен с входом основного Н плеча волноводного тройника 2, один выход которого соединен с входом-выходом антенны 5, а другой с входом-выходом переменной нагрузки 3. Выход Е плеча волноводного тройника 2 соединен с входом приемника 4.
Измерение ЭПР модели
Включают передатчик 1. Антенна 5 излучает поле в измерительную зону полигона. Измерение ЭПР модели производят следующим образом (фиг. 1). В отсутствие модели цели на опоре, с помощью КСН 3 производят компенсацию сигнала отраженного от входа-выхода антенны 5 и суммарной когерентной помехи, вызванной отражениями функциональных устройств полигона, облучаемых боковыми лепестками диаграммы направленности (ДН) антенны 5. Отражения от опор 6 и 7 сами компенсируются, т.к. они противофазны. После чего на опору 6 устанавливают эталонный отражатель 12, например, выполненный в виде металлического шара, ЭПР которого равна πr2, где r - радиус шара, который должен быть больше длины волны, и калибруют шкалу приемника в значениях ЭПР. Затем на опору 6 устанавливают модель цели, измеряют и отсчитывают значение ЭПР по шкале приемника.
Измеренное значение ЭПР модели пересчитывают в ЭПР реальной цели по формуле:
σрц=σм/M2,
где σрц - ЭПР реальной цели;
σм - ЭПР модели;
M - масштаб модели.
Отличительные признаки изобретения
Введена компенсационная опора 7, выполненная тождественно опоре модели 6. Компенсационную опору устанавливают в измерительной зоне полигона на платформе 8 жестко, как единое целое с опорой модели цели и параллельно опоре модели, на расстоянии больше диаметра опоры со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны λ падающего на модель поля - (2m-1)⋅λ/4, где m - натуральные числа, опоры крепят жестко.
Установка для измерения эффективной площади рассеяния радиолокационных целей на моделях содержит: передатчик, приемник, двойной волноводный тройник, комплексную переменную нагрузку, приемно-передающую антенну, опору модели и компенсационную опору. Компенсационная опора выполнена тождественно опоре модели, устанавливают ее на платформе в измерительной зоне полигона жестко, как единое целое с опорой модели цели и параллельно ей на расстоянии больше диаметра опоры со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны падающего на модель поля. Технический результат изобретения - увеличение точности измерения ЭПР моделей целей путем подавления помехи, вызванной отражением падающего поля от опоры модели. 1 ил.
Установка для измерения эффективной площади рассеяния радиолокационных целей, содержащая: передатчик, приемник, двойной волноводный тройник, комплексную переменную нагрузку, приемно-передающую антенну и опору модели, причем выход передатчика соединен с входом основного Н плеча волноводного тройника, один выход которого соединен с входом антенны, а другой соединен с входом-выходом переменной нагрузки, кроме того, выход Е плеча волноводного тройника соединен с входом приемника, отличающаяся тем, что введена компенсационная опора, выполненная тождественно опоре модели, причем компенсационную опору устанавливают на платформе в измерительной зоне полигона жестко, как единое целое с опорой модели цели, и параллельно опоре модели на расстоянии больше диаметра опоры со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны падающего на модель поля.
Устройство для измерения характеристик радиолокационного рассеяния объекта | 1987 |
|
SU1536326A1 |
СПОСОБ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ ОБЪЕКТОВ И РАДИОЛОКАЦИОННЫЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2371730C1 |
Способ измерения эффективной площади рассеяния объекта | 1988 |
|
SU1640658A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ КРУПНОГАБАРИТНЫХ ОБЪЕКТОВ | 2007 |
|
RU2342672C1 |
Устройство для высокоскоростного рентгеноструктурного анализа | 1978 |
|
SU763750A1 |
Авторы
Даты
2017-02-07—Публикация
2015-10-13—Подача