СПОСОБ ТЕПЛОПРОЧНОСТНЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ ГИПЕРЗВУКОВЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2017 года по МПК G01N25/72 G01M9/04 

Описание патента на изобретение RU2625637C1

Изобретение относится к области теплофизики, в частности к теплопрочностным испытаниям носовых обтекателей и передних кромок воздухозаборников гиперзвуковых летательных аппаратов с помощью инфракрасных нагревателей по программе гиперзвукового полета.

Известны способы для нагревания изделий, в том числе носовых частей летательных аппаратов, путем создания теплового потока с помощью инфракрасного нагревания до высоких температур, когда нагревательные системы располагают параллельно нагреваемой поверхности на эквидистантном расстоянии от них [а.с. №120940, Бюллетень изобретений №13, 1959 г.; Статические испытания на прочность сверхзвуковых самолетов. М.: «Машиностроение», 1974, 344 с.]. Если их дискретно располагать параллельно нагреваемой поверхности, то они начинают нагревать эту поверхность с той или иной неравномерностью, определяемой взаимным расположением излучателей между собой и нагреваемой поверхностью. Следует отметить, что в любом случае нагревательные системы и системы управления настолько инерционны (к примеру, кварцевые инфракрасные излучатели типа КГ имеют величину постоянной времени 0,3-0,4 секунды), что обеспечить нагревание типа «тепловой удар» или «мгновенный старт» не представляется возможным с помощью существующих способов нагревания натурной конструкции. Особенно сложно произвести такой нагрев носка обтекателя с помощью параллельно расположенного инфракрасного нагревателя даже с самой минимальной величиной постоянной времени всей нагревательной системы, так как сконцентрировать тепловой поток на самой крайней части, превращающейся в точку или линию, просто невозможно. Однако при полете с гиперзвуковой скоростью на носке обтекателя возникает скачок уплотнения в сотые доли секунды, вызывающий нагрев его с темпом 100-200 град/с и более.

За прототип принят способ и устройство, описанные в работе «Статические испытания на прочность сверхзвуковых самолетов», авторы Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. М.: «Машиностроение», 1974, стр. 96-98 (рис. 3.20), стр. 115-126 (рис. 4.12), стр. 139-142 (рис. 4.28). Способ заключается в нагреве исследуемой поверхности инфракрасными нагревателями, располагаемыми параллельно исследуемой поверхности. Устройство, реализующее этот способ, содержит корпус, рефлектор или экран, токоподводящие элементы и излучатели различного типа (кварцевые, графитовые, силитовые и из других тугоплавких материалов).

Всем техническим решениям присущи недостатки, заключающиеся в значительной инерционности и достаточной протяженности расположенных параллельно нагреваемой поверхности нагревателей. Существующие нагревательные системы не могут создать в ограниченной зоне (например, носке обтекателя) в очень короткий срок менее 0,1 с тепловой поток с плотностью до 4-5 МВт/м2 и последующей передачей его на испытываемый объект.

Задачей и техническим результатом изобретения является разработка способа и установки, обеспечивающих нагревание носка обтекателя или кромки воздухозаборника тепловым потоком с плотностью до 4-5 МВт/м2 за время не более 0,1 с.

Поставленная задача и технический результат достигаются тем, что способ теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата с помощью инфракрасных нагревателей по программе гиперзвукового полета состоит в том, что размещают высокотемпературный нагреватель в теплоизоляционной камере, располагают теплоизоляционную камеру перпендикулярно оси обтекателя, между теплоизоляционной камерой и обтекателем устанавливают регулируемую в соответствии с величиной и распределением теплового потока диафрагму, определяющую зону нагревания по носку обтекателя, в камере создают необходимый тепловой поток, достаточный для нагрева носка обтекателя, раскрывают нижнюю стенку теплоизоляционной камеры, одновременно включают боковые высокотемпературные инфракрасные нагреватели и совместно с боковыми нагревателями облучают этим тепловым потоком непосредственно носок обтекателя, причем нижнюю стенку теплоизоляционной камеры раскрывают за время 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2.

Поставленная задача и технический результат также достигаются тем, что в установке для теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата, содержащей каркас в виде силовой фермы, инфракрасные нагреватели, один из которых расположен параллельно боковым сторонам обтекателя, дополнительно установлены теплоизоляционная камера, термостойкая регулируемая диафрагма, грузы, подвижные подставки, электропривода, система управления нагревом, блок измерения температуры, программное устройство; второй из инфракрасных нагревателей установлен в теплоизоляционной камере, которая расположена в верхней части силового каркаса, перпендикулярно оси испытываемого обтекателя над диафрагмой из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой, причем каждый из фрагментов нижней стенки закреплен через шарнир на тяге с грузом, располагаемым на подвижной подставке,

На фигуре 1 показана схема установки для теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов.

На фигуре 2 приведены экспериментальные графики изменения температуры от времени на разных расстояниях от вершины внешней поверхности обтекателя.

Установка для теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов (фиг. 1) содержит силовой каркас 1, инфракрасные нагреватели 2, один из которых расположен параллельно боковым сторонам обтекателя, второй в теплоизоляционной камере 3, расположенной в верхней части силового каркаса 1, перпендикулярно оси испытываемого носового обтекателя 4 над регулируемой диафрагмой 5 из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой 6. Каждая часть нижней стенки камеры 6 через шарнир 7 тягой 8 соединена с грузом 9, который установлен на подставке 10. Последняя может быть убрана с помощью электропривода 12, управляемым путевым сигналом от системы управления нагревом 13. Команда на подачу электрической мощности на инфракрасные нагреватели 2 выдается управляющими сигналами от программного устройства 14 и блока измерения температуры 11.

Предлагаемый способ реализуется следующим образом. Сначала на основании каркаса 1 устанавливают испытываемый носовой обтекатель 4. Над обтекателем 4 на верхней балке каркаса 1 устанавливают теплоизоляционную камеру 3 с высокотемпературным инфракрасным нагревателем 2 (например, с излучателями из композиционного материала «Углекон», способного работать при температурах до 2500…2700 K). Между камерой 3 и носовым обтекателем 4 располагают рассчитываемую по заданному распределению теплового потока и его величине регулируемую диафрагму 5 так, что подвижная и разделенная на несколько частей нижняя стенка 6 теплоизоляционной камеры имеет возможность раздвигаться и открывать отверстие в диафрагме. Размеры отверстия в диафрагме предварительно рассчитывают для выбора площади облучения передней части обтекателя. Собранную установку помещают в вакуумную камеру, подключают электрическую мощность к нагревателям 2 и проводят теплопрочностные испытания. В начальный момент проводят нагрев теплоизолированной камеры 3 до максимальной температуры, при которой выдерживают некоторое время до установления стационарной (или квазистационарной) температуры. Затем по путевому сигналу на электропривод 12 от системы управления нагревом 13 убирают подставку 10, груз 9 начинает падать со скоростью свободного падения и через тягу 8 увлекает за собой части нижней стенки камеры 6, открывая таким образом отверстие в диафрагме 5. Так, при двух частях нижней стенки 6 и диаметре отверстия в диафрагме не более 100 мм время открытия отверстия в диафрагме 5 составляет не более 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2. Одновременно с раскрытием нижней стенки включают боковой инфракрасный нагреватель 2, обеспечивая нагрев всего обтекателя по заданной программе.

На фиг. 2 приведены экспериментальные графики нагрева, полученные при испытании опытного обтекателя из композиционного (керамического) материала. Из графиков видно, что максимальный достигнутый темп нагрева составляет 270 град/с.

Таким образом, использование изобретения позволит выполнить теплопрочностные испытания носового обтекателя или передней кромки воздухозаборника и имитировать нагревание типа «тепловой удар» или «мгновенный старт».

Похожие патенты RU2625637C1

название год авторы номер документа
ИНФРАКРАСНЫЙ НАГРЕВАТЕЛЬНЫЙ БЛОК 2013
  • Баранов Александр Николаевич
  • Ходжаев Юрий Джураевич
RU2539974C1
НАГРЕВАТЕЛЬ ДЛЯ СТЕНДА ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ 2015
  • Афанасьев Владимир Николаевич
  • Бобров Александр Викторович
  • Бурцев Сергей Иванович
  • Лопухов Игорь Иванович
  • Филимонов Александр Борисович
RU2583845C1
Инфракрасный нагревательный блок 2019
  • Ходжаев Юрий Джураевич
  • Юдин Валерий Михайлович
RU2722855C1
БЛОК-ИМИТАТОР ТЕМПЕРАТУРНЫХ ПОЛЕЙ 2014
  • Баранов Александр Николаевич
  • Ходжаев Юрий Джураевич
RU2562277C1
НАГРЕВАТЕЛЬ ДЛЯ СТЕНДА ИСПЫТАНИЙ НА ПРОЧНОСТЬ 2013
  • Бобров Александр Викторович
  • Бурцев Сергей Иванович
  • Лопухов Игорь Иванович
  • Петрова Ирина Васильевна
  • Филимонов Александр Борисович
RU2548617C1
ИНФРАКРАСНЫЙ НАГРЕВАТЕЛЬ 1980
  • Баранов А.Н.
  • Зазыкина Л.П.
  • Ким С.К.
  • Козырев М.Е.
  • Попова М.В.
  • Утюжников М.П.
  • Ходжаев Ю.Д.
SU1785411A1
Высокотемпературный модульный инфракрасный нагревательный блок 2023
  • Ходжаев Юрий Джураевич
  • Суслин Владимир Владимирович
RU2809470C1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2571442C1
Способ статических испытаний керамических обтекателей 2022
  • Райлян Василий Семенович
  • Русин Михаил Юрьевич
  • Фокин Василий Иванович
  • Тесленко Елена Анатольевна
RU2793603C1
Способ теплового нагружения обтекателей ракет из неметаллических материалов 2017
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
  • Неповинных Виктор Иванович
  • Терехин Александр Васильевич
RU2676397C1

Иллюстрации к изобретению RU 2 625 637 C1

Реферат патента 2017 года СПОСОБ ТЕПЛОПРОЧНОСТНЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ ГИПЕРЗВУКОВЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности теплового потока (4-5 МВт/м2) и последующей передачи его на испытываемый объект в очень короткий срок (менее 0,1 с), в частности, на самую переднюю часть носового обтекателя или переднюю кромку воздухозаборника. Способ заключается в том, что с помощью автономного высокотемпературного нагревателя в специальной камере, расположенной перпендикулярно оси носовой части, накапливают тепловую энергию (тепловой поток), а затем через регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, создают необходимую плотность теплового потока и совместно с боковыми нагревателями облучают этим тепловым потоком носовую часть обтекателя, раскрывая нижнюю стенку специальной камеры, находящейся непосредственно над фокусирующей диафрагмой и носком испытываемого обтекателя, причем нижняя стенка, состоящая из двух или нескольких частей, раскрывается со скоростью, обеспечивающей полетную скорость нарастания теплового потока на носке обтекателя совместно с боковыми нагревателями. Технический результат - обеспечение теплового удара на носок обтекателя, что имеет место при достижении гиперзвуковых скоростей полета и появлении сверхзвукового скачка в исключительно малый промежуток времени, упрощение процесса нагревания объекта, повышение достоверности и точности воспроизведения температурного поля. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 625 637 C1

1. Способ теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата с помощью инфракрасных нагревателей по программе гиперзвукового полета состоит в том, что размещают высокотемпературный нагреватель в теплоизоляционной камере, располагают теплоизоляционную камеру перпендикулярно оси обтекателя, между теплоизоляционной камерой и обтекателем устанавливают регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, в камере создают необходимый тепловой поток, достаточный для нагрева носка обтекателя, раскрывают нижнюю стенку теплоизоляционной камеры и одновременно включают боковые высокотемпературные инфракрасные нагреватели, и совместно с боковыми нагревателями облучают этим тепловым потоком непосредственно носок обтекателя, причем нижнюю стенку теплоизоляционной камеры раскрывают за время 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2.

2. Установка для теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата, состоящая из каркаса в виде силовой фермы, инфракрасных нагревателей, один из которых расположен параллельно боковым сторонам обтекателя, отличающаяся тем, что дополнительно содержит теплоизоляционную камеру, диафрагму, грузы, подвижные подставки, электропривода, систему управления нагревом, блок измерения температуры, программное устройство, второй из инфракрасных нагревателей установлен в теплоизоляционной камере, теплоизоляционная камера расположена в верхней части силового каркаса, перпендикулярно оси испытываемого обтекателя над диафрагмой из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой, причем каждый из фрагментов нижней стенки закреплен через шарнир на тяге с грузом, располагаемым на подвижной подставке.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625637C1

Способ воспроизведения в лабораторных условиях аэродинамического нагревания и охлаждения летательных аппаратов или их отдельных частей 1958
  • Сергеев А.С.
SU120940A1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2571442C1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2571442C1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2571442C1
WO 2005095934 A1, 13.10.2005
US 20080304539 A1, 11.12.2008.

RU 2 625 637 C1

Авторы

Ходжаев Юрий Джураевич

Сомов Дмитрий Олегович

Суслин Владимир Владимирович

Даты

2017-07-17Публикация

2016-06-06Подача