Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками.
Известна опора, включающая лепестковый газодинамический подшипник, содержащая корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора (патент РФ №2489615, МПК F16C 17/10, опубл. 10.08.2013).
Основным недостатком такой опоры является то, что лепестковый газодинамический подшипник работает только на рабочих частотах вращения. На режимах запуска, авторотации и пониженных частотах вращения между лепестками и валом не образуется воздушная прослойка и подшипник работает за счет механического контакта лепестков с валом, что сопровождается износом и выделением тепла. Введение износостойких покрытий на вал снижает трение, но не исключает его. Также во время транспортировки турбомашины возможна деформация лепестков из-за ударных воздействий. Следовательно, все это приводит к снижению долговечности, надежности и ресурса работы опоры.
Техническим результатом, на достижение которого направлено изобретение, является повышение ресурса опоры, снижение тепловыделения и обеспечение транспортировки турбомашины без повреждения лепесткового газодинамического подшипника.
Технический результат достигается тем, что в комбинированной радиальной опоре, содержащей корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора, в отличие от известной на внутренней поверхности цапфы ротора выполнен кольцевой выступ, в торцевую поверхность которого упирается кольцо, установленное внутри цапфы ротора и сопряженное с ее внутренней поверхностью, причем на кольце шарнирно установлены рычаги, равномерно расположенные по окружности относительно оси вращения цапфы ротора, которые шарнирно связаны с ответными рычагами, шарнирно установленными на ответном кольце, расположенном внутри цапфы ротора и сопряженном с ее внутренней поверхностью, в торцевую поверхность ответного кольца упирается подвижная втулка, поджатая с обратной стороны осевой пружиной, ограниченной в осевом направлении гайкой, зафиксированной на наружной поверхности цапфы ротора, при этом внутренняя поверхность подвижной втулки выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника, внутреннее кольцо которого установлено на внутреннем корпусе, механически связанном крышкой с корпусом подшипника.
Шариковый подшипник, закрыт уплотнениями, содержащими консистентную смазку.
Заявляемое решение поясняется чертежами, на которых изображены: фиг. 1 - продольный разрез опоры в нерабочем состоянии; фиг. 2 - продольный разрез опоры в рабочем состоянии.
Комбинированная радиальная опора (фиг. 1) содержит корпус подшипника 1, в пазах которого установлены лепестки 2, охватывающие втулку 3, установленную на цапфе ротора 4. На внутренней поверхности цапфы ротора 4 выполнен кольцевой выступ 5. В торцевую поверхность выступа 5 упирается кольцо 6, которое установлено внутри цапфы ротора 4 и сопряжено с ее внутренней поверхностью. На кольце 6 шарнирно установлены рычаги 7, которые равномерно расположены по окружности относительно оси вращения цапфы ротора 4. Рычаги 7 шарнирно связаны с ответными рычагами 8, шарнирно установленными на ответном кольце 9, которое расположено внутри цапфы ротора 4 и сопряжено с ее внутренней поверхностью. В торцевую поверхность 10 ответного кольца 9 упирается подвижная втулка 11, поджатая с обратной стороны 12 осевой пружиной 13. Пружина 13 ограничена в осевом направлении гайкой 14, которая зафиксирована на наружной поверхности цапфы ротора 4 при помощи, например, резьбового соединения. Внутренняя поверхность подвижной втулки 11 выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника 15, внутреннее кольцо которого установлено на внутреннем корпусе 16, механически связанном крышкой 17 с корпусом подшипника 1. Также шарикоподшипник 15 закрыт уплотнениями 18, содержащими консистентную смазку.
Сборка опоры осуществляется следующим образом.
Собирается корпус подшипника 1 с лепестками 2, в который устанавливается цапфа ротора 4 с втулкой 3. Далее во внутреннюю полость цапфы ротора последовательно монтируются кольцо 6 и ответное кольцо 9 с рычагами 7 и 8. Технологически заводится внутрь цапфы ротора внутренний корпус 16 с установленным на нем шарикоподшипником 15. Далее устанавливается подвижная втулка 11, осевая пружина 13. Полученный пакет элементов фиксируется в осевом направлении гайкой 14. После этого внутренний корпус 16 скрепляется с корпусом подшипника 1 крышкой 17.
В неподвижном состоянии (фиг. 1), на режимах запуска, останова или авторотации радиальная нагрузка цапфы ротора 4 на корпус подшипника 1 осуществляется через подвижную втулку 11, обойму шарикоподшипника 15, внутренний корпус 16 и крышку 17. Это обеспечивается конической посадкой обоймы шарикоподшипника 15 с подвижной втулкой 11, которая поджата осевой пружиной 13. С увеличением частоты вращения (фиг. 2) увеличивается центробежная сила от массы рычагов 7 и 8, которые воздействуют в осевом направлении через ответное кольцо 9 на подвижную втулку 11, сжимая пружину 13. В результате отключается из работы шариковый подшипник и в работу вступает лепестковый газодинамический подшипник. Тем самым предотвращается износ лепестков на режимах запуска, останова, авторотации, а также повреждение лепестков при транспортировке турбомашины, повышается ресурс, долговечность опоры и надежность турбомашины в целом.
Таким образом, предложенная конструкция комбинированной радиальной опоры позволит повысить ресурс опоры, снизить тепловыделения и обеспечить транспортировку турбомашины без повреждения лепесткового газодинамического подшипника.
название | год | авторы | номер документа |
---|---|---|---|
Комбинированный радиальный подшипник с широким диапазоном рабочих скоростей и нагрузок (варианты) | 2016 |
|
RU2649280C1 |
УПРУГОДЕМПФЕРНАЯ ОПОРА РОТОРНОЙ МАШИНЫ | 2007 |
|
RU2365766C1 |
СТЕНД ДЛЯ ЦИКЛИЧЕСКИХ ИСПЫТАНИЙ ГАЗОДИНАМИЧЕСКИХ ПОДШИПНИКОВ | 2015 |
|
RU2587758C1 |
КОНИЧЕСКИЙ ЛЕПЕСТКОВЫЙ ПОДШИПНИК СКОЛЬЖЕНИЯ | 2010 |
|
RU2437005C2 |
РАДИАЛЬНЫЙ ЛЕПЕСТКОВЫЙ ГАЗОДИНАМИЧЕСКИЙ ПОДШИПНИК | 2006 |
|
RU2309304C1 |
КОМБИНИРОВАННАЯ ОПОРА | 2015 |
|
RU2605703C2 |
РАДИАЛЬНАЯ УПРУГАЯ ОПОРА РОТОРА ТУРБОМАШИНЫ | 2015 |
|
RU2600190C1 |
РАДИАЛЬНАЯ УПРУГО-ДЕМПФЕРНАЯ ОПОРА РОТОРА ТУРБОМАШИНЫ | 2015 |
|
RU2600219C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2013 |
|
RU2539403C1 |
ЭЛЕКТРОМАШИНА | 2011 |
|
RU2477916C2 |
Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку (3), установленную на цапфе ротора (4). На внутренней поверхности цапфы ротора (4) выполнен кольцевой выступ (5), в торцевую поверхность которого упирается кольцо (6), установленное внутри цапфы ротора (4) и сопряженное с ее внутренней поверхностью. На кольце (6) шарнирно установлены рычаги (7), равномерно расположенные по окружности относительно оси вращения цапфы ротора (4), которые шарнирно связаны с ответными рычагами (8), шарнирно установленными на ответном кольце (9), расположенном внутри цапфы ротора (4) и сопряженном с ее внутренней поверхностью. В торцевую поверхность (10) ответного кольца (9) упирается подвижная втулка (11), поджатая с обратной стороны (12) осевой пружиной (13), ограниченной в осевом направлении гайкой (14), зафиксированной на наружной поверхности цапфы ротора (4). Внутренняя поверхность подвижной втулки (11) выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника (15), внутреннее кольцо которого установлено на внутреннем корпусе (16), механически связанном крышкой (17) с корпусом (1) подшипника. Шарикоподшипник (15) закрыт уплотнениями (18), содержащими консистентную смазку. Технический результат: повышение ресурса опоры, снижение тепловыделения и обеспечение транспортировки турбомашины без повреждения лепесткового газодинамического подшипника. 1 з.п. ф-лы, 2 ил.
1. Комбинированная радиальная опора, содержащая корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора, отличающаяся тем, что на внутренней поверхности цапфы ротора выполнен кольцевой выступ, в торцевую поверхность которого упирается кольцо, установленное внутри цапфы ротора и сопряженное с ее внутренней поверхностью, причем на кольце шарнирно установлены рычаги, равномерно расположенные по окружности относительно оси вращения цапфы ротора, которые шарнирно связаны с ответными рычагами, шарнирно установленными на ответном кольце, расположенном внутри цапфы ротора и сопряженном с ее внутренней поверхностью, в торцевую поверхность ответного кольца упирается подвижная втулка, поджатая с обратной стороны осевой пружиной, ограниченной в осевом направлении гайкой, зафиксированной на наружной поверхности цапфы ротора, при этом внутренняя поверхность подвижной втулки выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника, внутреннее кольцо которого установлено на внутреннем корпусе, механически связанном крышкой с корпусом подшипника.
2. Комбинированная радиальная опора по п. 1, отличающаяся тем, что шарикоподшипник закрыт уплотнениями, содержащими консистентную смазку.
КОМБИНИРОВАННАЯ ОПОРА | 2006 |
|
RU2319048C1 |
KR 20120009724 A, 02.02.2012 | |||
КОМБИНИРОВАННЫЙ РАДИАЛЬНО-ОСЕВОЙ ГАЗОДИНАМИЧЕСКИЙ ЛЕПЕСТКОВЫЙ ПОДШИПНИК СКОЛЬЖЕНИЯ | 2011 |
|
RU2489615C1 |
КОМБИНИРОВАННАЯ ОПОРА | 2007 |
|
RU2332594C1 |
Авторы
Даты
2017-08-01—Публикация
2015-12-15—Подача