Способ определения потока излучения трубчатых ламп Российский патент 2017 года по МПК G01J1/42 

Описание патента на изобретение RU2626813C1

Изобретение относится к фотометрии и может быть использовано для определения потока излучения ламп трубчатой конструкции таких, например, как люминесцентные осветительные лампы, бактерицидные (в том числе мощные амальгамные) ртутные лампы, импульсные ксеноновые лампы. При этом спектральный диапазон, в котором определяется поток излучения, может быть любым: видимый, ультрафиолетовый, инфракрасный.

Известен универсальный способ определения потоков излучения ламп, в том числе трубчатой формы, основанный на использовании фотометрического шара (см., например, [1]). Основной недостаток известного способа заключается в необходимости наличия фотометрического шара значительных габаритов (в несколько раз превышающих длину фотометрируемой лампы) и сложной методике выполнения измерений. Такое оборудование имеется лишь в специализированных измерительных лабораториях и используется для выборочного контроля характеристик одной или нескольких ламп из партии.

Между тем, в реальной практике применения ламп трубчатой конструкции требуются более простые и удобные способы определения потока излучения, пригодные для повседневного и сплошного контроля.

Известен способ определения потока ультрафиолетового излучения трубчатых бактерицидных ламп низкого давления [2], принятый за прототип.

В соответствии с этим известным способом осуществляют измерение энергетической облученности, создаваемой трубчатой лампой, в точке на перпендикуляре к оси трубчатой лампы, проходящем через ее середину. Для измерения энергетической облученности используют фотоприемник с косинусной индикатрисой чувствительности, размещенный напротив середины трубчатой лампы. По измеренной величине энергетической облученности с учетом параметров схемы измерений вычисляют поток ультрафиолетового излучения трубчатой бактерицидной лампы.

Недостаток известного способа заключается в значительной погрешности определения потока излучения трубчатых ламп за счет заметного влияния рассеянного излучения.

Причины возникновения этого недостатка заключаются в следующем.

Для определения потока излучения трубчатой лампы согласно известному способу фотоприемник должен быть удален от трубчатой лампы на значительное расстояние (не менее удвоенной длины трубчатой лампы). Для случая современных мощных амальгамных ламп с длиной до 1,5 м это удаление должно составлять не менее 3 м. Фотометристы обычно стремятся максимально увеличить это расстояние, т.к. при этом упрощается последующая обработка результатов и выполнение вычислений. Фотоприемник, удаленный от трубчатой лампы, кроме излучения собственно трубчатой лампы в пределах своего углового поля зрения воспринимает отраженное и рассеянное стенами, полом и потолком вторичное излучение лампы. Обычно измерения такого рода осуществляют в помещениях со специально обработанными поверхностями стен и потолка для снижения отраженного излучения (т.н. «темная комната»). Но даже в случае специально подготовленных помещений общий уровень фонового облучения фотоприемника весьма значителен (в работе [2] приведена величина 20%) за счет большого углового поля фотоприемника.

Технический результат от применения предложенного способа определения потока излучения трубчатых ламп заключается в повышении точности за счет уменьшения (вплоть до полного исключения) влияния рассеянного излучения, отраженного стенами, полом и потолком испытательного помещения.

Указанный технический результат достигается тем, что при определении потока излучения трубчатых ламп, предусматривающего измерение энергетической облученности, создаваемой трубчатой лампой на известном удалении от оси лампы, с помощью фотоприемника с косинусной индикатрисой чувствительности, размещенного в точке измерения на перпендикуляре к оси трубчатой лампы, проходящем через ее середину, и вычисление потока излучения лампы, удаление фотоприемника от оси трубчатой лампы выбирают из неравенства

а вычисление потока излучения трубчатой лампы выполняют по расчетному соотношению

где Е - энергетическая освещенность, измеренная фотоприемником;

L - половина длины трубчатой лампы;

R - радиус трубчатой лампы;

h - удаление фотоприемника от оси трубчатой лампы.

Изобретение поясняется графическими материалами, где на фиг. 1 показан вид в плане (в горизонтальной плоскости) на схему выполнения измерений при определении потока излучения трубчатых ламп в испытательном помещении, на фиг. 2 - то же, в вертикальной плоскости.

Сущность и особенности применения предложенного способа определения потока излучения трубчатых ламп будут понятны из следующего описания.

В испытательном помещении 1 размещается трубчатая лампа 2 в виде излучающего цилиндра длиной 2L и радиусом R. На удалении h от оси лампы 2 размещается фотоприемник 3 с косинусной угловой диаграммой (индикатрисой) чувствительности. Центр приемной площадки фотоприемника 3 находится на перпендикуляре к оси лампы 2, проходящем через середину лампы 2.

Для определения потока излучения трубчатой лампы 2 предварительно измеряют следующие величины:

L - половина длины трубчатой лампы;

R - радиус трубчатой лампы;

h - удаление фотоприемника от оси трубчатой лампы. Удаление фотоприемника выбирают из неравенства (1).

Затем включают лампу 2 и после стабилизации рабочего режима осуществляют измерение энергетической освещенности Е с помощью калиброванного фотоприемника 3. После этого вычисляют поток, излучаемый трубчатой лампой в полную сферу (в телесном угле 4π стерадиан) по расчетному соотношению (2).

Технический результат от применения предложенного способа, заключающийся в повышении точности определения потока излучения трубчатых ламп, обусловлен следующим.

При работе трубчатой лампы в помещении практически весь излученный ею поток попадает на стены, пол и потолок испытательного помещения. Никакие специальные меры по уменьшению коэффициента отражения поверхностей не могут полностью исключить отраженное и рассеянное излучение. В результате часть потока излучения лампы, отраженного и рассеянного поверхностями помещения, попадает на фотоприемник 3 в виде мешающего (фонового) излучения, которое приводит к увеличению погрешности измерений.

Реализация предложенного способа подразумевает размещение фотоприемника с косинусной индикатрисой чувствительности вблизи фотометрируемой лампы, а именно в положении 4, удовлетворяющем неравенству (1).

При перемещении фотоприемника из положения 3 в положение 4 происходит следующее.

Во-первых, при приближении фотоприемника к лампе растет величина энергетической освещенности, обусловленная прямым освещением приемной площадки фотоприемника.

Во-вторых, при этом увеличивается видимая фотоприемником угловая величина лампы (лампа как бы «заполняет» собой большую часть углового поля фотоприемника) и, соответственно, уменьшается угловая величина видимых фотоприемником рассевающих поверхностей пола, потолка и стен. В результате уровень рассеянного фонового излучения на фотоприемнике снижается.

Т.е. при уменьшении удаления h увеличивается полезный сигнал (энергетическая освещенность от прямого освещения лампой) и уменьшается мешающий рассеянный сигнал, что приводит к улучшению соотношения «сигнал/фон» на фотоприемнике, уменьшению относительной доли фонового излучения и к потенциальному уменьшению за счет этого погрешности определения потока излучения лампы.

Расчетное соотношение (2) связывает измеренную величину энергетической облученности Е, параметры схемы измерения и размеры фотометрируемой лампы с определяемым потоком излучения Ф. Использование соотношения (2) позволяет корректно вычислить искомый поток излучения Ф и тем самым реализовать потенциальную возможность уменьшения погрешности определения потока излучения трубчатой лампы.

Т.о., совместное применение соотношений (1) и (2) при определении потока излучения трубчатых ламп по измеренной с помощью фотоприемника с косинусной индикатрисой чувствительности в точке измерения напротив середины лампы позволяет уменьшить погрешность определения за счет уменьшения относительной доли рассеянного фонового излучения на фотоприемнике.

Следует заметить, что предложенный способ сохраняет свою работоспособность при уменьшении удаления фотоприемника от оси трубчатой лампы вплоть до физического касания фотоприемника с колбой трубчатой лампы (в предельном случае для бесконечно тонкой стенки колбы лампы h=R), при этом технический результат достигает максимальной величины. На практике такой физический контакт фотоприемника с цилиндрической колбой лампы может оказаться неприемлемым в силу, например, нежелательного нагрева фотоприемника работающей лампой. В таком случае следует выбирать расстояние h минимально возможным из условия допустимого нагрева фотоприемника.

В качестве фотоприемника в предлагаемом способе могут быть использованы фотодиоды, вакуумные фотоэлементы с внешним фотоэффектом, пироэлектрические и другие приемники излучения, обладающие косинусной индикатрисой чувствительности и откалиброванные по чувствительности в выбранном спектральном диапазоне измерений.

Для фотометрирования импульсных источников излучения трубчатой конструкции, например, ксеноновых ламп-вспышек, используемый фотоприемник должен обладать достаточным быстродействием.

Источники информации

1. ГОСТ 17616-82. Лампы электрические. Методы измерения электрических и световых параметров.

2. Л.М. Василяк, Л.А. Дроздов, С.В. Костюченко и др. Методика измерения потока УФ-излучения трубчатых бактерицидных ламп НД, «Светотехника» №1, 2011 г. с. 29-32.

Похожие патенты RU2626813C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ИМИТАЦИИ ФОНОВОЙ ЗАСВЕТКИ БЕЗ ИСКАЖЕНИЯ СПЕКТРА ФОНОВОГО ИЗЛУЧЕНИЯ 2011
  • Гладышев Анатолий Владимирович
  • Карелин Андрей Юрьевич
  • Романовский Александр Борисович
  • Смирнов Андрей Алексеевич
  • Смирнов Владимир Леонидович
  • Щекин Александр Михайлович
RU2470262C1
Устройство для определения инди-КАТРиС РАССЕяНия диСпЕРСНОй СРЕды 1979
  • Гриценко Александр Павлович
  • Журавлев Владимир Александрович
  • Кудрявицкий Феликс Аронович
  • Петров Глеб Дмитриевич
  • Сысак Виталий Михайлович
SU851112A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ СВЕТОВОЗВРАЩЕНИЯ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ 2002
  • Барышников Н.В.
  • Бокшанский В.Б.
  • Вязовых М.В.
  • Животовский И.В.
  • Карасик В.Е.
  • Немтинов В.Б.
  • Хомутский Ю.В.
RU2202814C1
Способ мониторинга атмосферных примесей 1990
  • Шоломицкий Геннадий Борисович
  • Городецкий Александр Константинович
SU1800325A1
ПРОТОЧНЫЙ РЕФРАКТОМЕТР (ВАРИАНТЫ) 1992
  • Войцехов Юрий Романович[Ua]
  • Дьяур Сергей Борисович[Ua]
RU2092813C1
КАЛИБРУЕМОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЧУВСТВИТЕЛЬНОСТИ И ПОРОГОВОЙ ЭНЕРГИИ ФОТОПРИЕМНЫХ УСТРОЙСТВ С ОПТИЧЕСКОЙ СИСТЕМОЙ 2012
  • Ершов Александр Георгиевич
  • Кувалдин Эдуард Васильевич
RU2515132C2
Способ определения индикатрисы рассеяния естественного излучения плоскими рассеивающими объектами 1988
  • Кунецкий Мирча Георгиевич
  • Проценко Владимир Анатольевич
  • Сахновский Михаил Юрьевич
  • Сербунов Яков Михайлович
SU1659794A1
СПОСОБ КОНТРОЛЯ ПАРАМЕТРОВ ПЛЕНОЧНЫХ ПОКРЫТИЙ И ПОВЕРХНОСТЕЙ В ПРОЦЕССЕ ИХ ИЗМЕНЕНИЯ И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Баранов А.М.
  • Кондрашов П.Е.
  • Смирнов И.С.
RU2199110C2
Способ определения концентрации хлорофилла и устройство для его осуществления 1988
  • Хомяков Георгий Владимирович
  • Кобылянский Владимир Ярославович
  • Агаджанов Грант Карапетович
  • Веселовский Владимир Александрович
  • Маренков Вадим Сергеевич
SU1659797A1
Способ измерения геометрических размеров прозрачных труб 1989
  • Пилипович Владимир Антонович
  • Есман Александр Константинович
  • Кулешов Владимир Константинович
  • Дубровский Виктор Павлович
SU1753269A1

Иллюстрации к изобретению RU 2 626 813 C1

Реферат патента 2017 года Способ определения потока излучения трубчатых ламп

Изобретение относится к области фотометрических измерений и касается способа определения потока излучения трубчатых ламп. Способ включает в себя измерение энергетической облученности, создаваемой трубчатой лампой на известном удалении от оси лампы, с помощью фотоприемника с косинусной индикатрисой чувствительности, размещенного в точке измерения на перпендикуляре к оси трубчатой лампы, проходящем через ее середину, и вычисление потока излучения лампы. Удаление фотоприемника от оси трубчатой лампы выбирают из неравенства R<h<L, а вычисление потока излучения трубчатой лампы выполняют по расчетному соотношению, связывающему энергетическую освещенность с половиной длины трубчатой лампы L, радиусом трубчатой лампы R и удалением фотоприемника от оси трубчатой лампы h. Технический результат заключается в повышении точности измерений. 2 ил.

Формула изобретения RU 2 626 813 C1

Способ определения потока излучения трубчатых ламп, предусматривающий измерение энергетической облученности, создаваемой трубчатой лампой на известном удалении от оси лампы, с помощью фотоприемника с косинусной индикатрисой чувствительности, размещенного в точке измерения на перпендикуляре к оси трубчатой лампы, проходящем через ее середину, и вычисление потока излучения лампы, отличающийся тем, что удаление фотоприемника от оси трубчатой лампы выбирают из неравенства

R<h<L,

а вычисление потока излучения трубчатой лампы выполняют по расчетному соотношению

где Е - энергетическая освещенность, измеренная фотоприемником;

L - половина длины трубчатой лампы;

R - радиус трубчатой лампы;

h - удаление фотоприемника от оси трубчатой лампы.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626813C1

Л.М
Василяк и др
"Методика измерения потока УФ излучения трубчатых бактерицидных ламп НД", СВЕТОТЕХНИКА, No 1, 2011 г
с
Солесос 1922
  • Макаров Ю.А.
SU29A1
Телефонный искатель 1937
  • Цыпкин М.С.
SU55702A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
US 6974941 B2, 13.12.2005
CN 103335710 A, 02.10.2013.

RU 2 626 813 C1

Авторы

Архипов Владимир Павлович

Даты

2017-08-01Публикация

2016-04-21Подача