Способ изготовления многоэлементного ИК фотоприемника Российский патент 2017 года по МПК H01L31/18 H01L27/14 

Описание патента на изобретение RU2628449C1

Изобретение относится к способам изготовления многоэлементных или матричных фотоприемников (МФП) на основе антимонида индия.

Многоэлементный фотоприемник на основе антимонида индия включает матрицу фоточувствительных элементов (МФЧЭ) с антиотражающим покрытием на освещаемой стороне фоточувствительных фотоэлементов (ФЧЭ), соединенных микроконтактами со схемой считывания.

Предлагаемый способ включает пассивацию освещаемой поверхности фоточувствительного элемента перед формированием антиотражающего покрытия, заключающуюся в том, что перед напылением антиотражающего покрытия с поверхности МФЧЭ ионным травлением удаляется слой собственного окисла без разгерметизации вакуумной камеры, что позволяет уменьшить скорость поверхностной рекомбинации фотогенерированных носителей тока и тем повысить квантовую эффективность и устранить захват носителей медленными состояниями.

Известный способ [патент на изобретение RU №2519024] изготовления многоэлементных или МФП на основе антимонида индия, чувствительных в спектральном диапазоне 3-5 мкм, включает в фотоприемник МФЧЭ на основе фотодиодов, кремниевый МОП-мультиплексор, холодный экран с диафрагмой и светофильтром, микрокриогенную систему (МКС) и корпус с окном для приема входного ИК-излучения.

МФЧЭ поэлементно скоммутирована с МОП-мультиплексором при помощи индиевых столбиков от каждого фотодиода и контакта к общей базе (подложке). МОП-мультиплексор с МФЧЭ расположен на растре, который установлен на холодном пальце МКС. Холодный экран окружает МФЧЭ и МОП-мультиплексор, пропуская входное ИК-излучение сквозь диафрагму и светофильтр к МФЧЭ. Корпус вакуумирован для снижения теплопритока к МКС.

Регистрируемое излучение падает на тыльную (освещаемую) сторону МФЧЭ, покрытую просветляющим диэлектрическим слоем, и поглощается в тонкой базе антимонида индия. При поглощении излучения происходит генерация электрон-дырочных пар. Неосновные носители тока (для базы n-типа проводимости это дырки, а для базы р-типа проводимости это электроны) движутся к р-n переходам, генерируя в них фототоки. Эти фототоки снимаются с помощью контактов к каждому фотодиоду и контакта к общей базе и поступают в МОП-мультиплексор.

В известном способе авторы предлагают минимизировать влияние наличия на тыльной (освещаемой) стороне МФЧЭ приповерхностного слоя, в котором происходит эффективное «отсасывание» к поверхности неосновных носителей и их последующая рекомбинация, формируя на тыльной стороне МФЧЭ просветляющее покрытие, содержащее встроенный заряд, знак которого противоположен знаку основных носителей в базе МФЧЭ, и полагают, что таким образом цель изобретения достигается. В известном способе авторы предлагают просветляющее покрытие с встроенным зарядом необходимого знака изготавливать стандартными методами - анодным окислением, резистивным или магнетронным нанесением, электролитическим или плазменным осаждением. Они считают, что материалами, пригодными для его изготовления, могут служить анодный окисел (АОП), Si, Ge, ZnS, CdS, CdTe, GaAs, SiO, SiO2, SiO2, Si3N4, HfO2, Bi2O3, ZrO2, Y2O3, MgF2, CaF3 и др.

Однако в известном способе авторы не учитывают влияния возможной неоднородности распределения встроенного заряда на границе полупроводник-диэлектрик, образующегося в результате финишной обработки поверхности перед напылением антиотражающего покрытия, в том числе в собственном окисле, вырастающем при межоперационном хранении. Неоднородность распределения встроенного заряда на границе полупроводник-диэлектрик приводит к неодинаковому значению поверхностного потенциала и соответственно наличию участков с различной скоростью поверхностной рекомбинации и неодинаковой чувствительностью. Любое распределение встроенного в диэлектрик заряда не позволит выровнять распределение потенциала на границе полупроводника, потому что суммарное действие встроенных зарядов будет иметь неоднородное распределение.

В известном способе [Effect of sulfur passivation of InSb (0 0 1) substrates on molekular-beam homoepitaxy. V.A. Solov’ev, I.V. Sedova, T.V. Lvova, M.V. Lebedev, P.A. Dement’ev, A.A. Sitnikova, A.N. Semenov, S.V. Ivanov, Applied Surface Science 356 (2015) 378-382] собственный окисел на поверхности антимонида индия растворяют в 1М водном растворе сульфида натрия (Na2S). Сульфидированный слой десорбируется с поверхности при температуре 400°C, открывая атомарно чистую поверхность антимонида индия, непосредственно перед процессом молекулярно-пучковой эпитаксии.

Существенным недостатком известного способа является нагревание гибридной сборки МФЧЭ со схемой считывания до 400°C: так как МФЧЭ поэлементно соединен с МОП-мультиплексором при помощи индиевых с низкой температурой плавления (156°C) микроконтактов и нагревание выше температуры плавления индия может приводить к нарушению гальванической и механической связи между элементами гибридной сборки.

Целью настоящего изобретения является повышение чувствительности, улучшение однородности параметров МФП в серийном производстве за счет повышения квантовой эффективности фоточувствительных элементов.

Поставленная цель достигается тем, что в изготовлении многоэлементного фотоприемника на основе антимонида индия, включающего изготовление матрицы фоточувствительных элементов из антимонида индия с тонкой базой, соединенных (элементов) со схемой считывания индиевыми микроконтактами, перед напылением на тыльную (освещаемую) сторону МФЧЭ герметизирующего и антиотражающего покрытия из ZnS с поверхности МФЧЭ бомбардировкой положительно заряженными ионами удаляется слой собственного окисла с неоднородно распределенным встроенным зарядом и формируется слой с однородно распределенным встроенным зарядом, обеспечиваемым бомбардировкой однородным потоком ионов аргона.

Пример.

На рисунке представлен фрагмент тепловизионного изображения поверхности излучателя с температурой Тф=33°C, полученного матрицей фоточувствительных элементов формата 640×512 и толщиной базы hInSb=19 мкм. Светлые участки изображения отображают области на матрице, обладающие большей квантовой эффективностью, а темные - пониженной чувствительностью. Из рисунка видно, что на правой части фрагмента изображения квантовая эффективность элементов матрицы неодинакова и имеет неоднородное распределение. Левая часть изображения демонстрирует однородное распределение чувствительности. Полученный результат обусловлен тем, что перед напылением на левую освещаемую часть МФЧЭ герметизирующего и антиотражающего покрытия из ZnS с поверхности МФЧЭ бомбардировкой положительно заряженными ионами удаляется слой собственного окисла с неоднородно распределенным встроенным зарядом и формируется слой с однородно распределенным встроенным зарядом, обеспечиваемым бомбардировкой однородным потоком ионов аргона. При этом правая часть закрыта от воздействия ионной бомбардировки и слой собственного окисла с неоднородно распределенным встроенным зарядом не был удален.

Похожие патенты RU2628449C1

название год авторы номер документа
Способ изготовления утоньшенного многоэлементного фотоприемника на основе антимонида индия с улучшенной однородностью и повышенной механической прочностью 2023
  • Власов Павел Валентинович
  • Гришина Анна Николаевна
  • Лопухин Алексей Алексеевич
  • Пермикина Елена Вячеславовна
  • Шишигин Сергей Евгеньевич
RU2811379C1
МНОГОЭЛЕМЕНТНЫЙ ИК ФОТОПРИЕМНИК 2012
  • Филачев Анатолий Михайлович
  • Болтарь Константин Олегович
  • Бурлаков Игорь Дмитриевич
  • Патрашин Александр Иванович
  • Яковлева Наталья Ивановна
RU2519024C1
Многоэлементный фотоприемник 2019
  • Седнев Михаил Васильевич
  • Гришина Анна Николаевна
  • Пестова Анастасия Александровна
  • Лопухин Алексей Алексеевич
  • Шаронов Юрий Павлович
  • Щербинин Александр Александрович
RU2703497C1
Способ изготовления матричного фотоприемника 2019
  • Седнев Михаил Васильевич
  • Трухачев Антон Владимирович
  • Атрашков Антон Станиславович
RU2749957C2
Способ изготовления двухспектрального матричного фотоприемника 2018
  • Седнев Михаил Васильевич
  • Лопухин Алексей Алексеевич
  • Болтарь Константин Олегович
  • Гришина Анна Николаевна
  • Баранцев Антон Сергеевич
RU2678519C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДА 2014
  • Климанов Евгений Алексеевич
RU2566650C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЧНОГО ФОТОПРИЕМНИКА 2014
  • Власов Павел Валентинович
  • Лопухин Алексей Алексеевич
  • Киселева Лариса Васильевна
  • Савостин Александр Викторович
  • Ерошенков Владимир Владимирович
  • Кожаринова Елена Анатольевна
  • Умникова Елена Васильевна
RU2573714C1
СПОСОБ УТОНЬШЕНИЯ ФОТОЧУВСТВИТЕЛЬНОГО СЛОЯ МАТРИЧНОГО ФОТОПРИЕМНИКА 2013
  • Киселева Лариса Васильевна
  • Савостин Александр Викторович
RU2536328C2
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЧНОГО ФОТОПРИЕМНИКА 2007
  • Головин Сергей Вадимович
  • Бурлаков Игорь Дмитриевич
  • Кашуба Алексей Сергеевич
RU2340981C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЧНОГО ФОТОПРИЕМНИКА (ВАРИАНТЫ) 2011
  • Болтарь Константин Олегович
  • Киселева Лариса Васильевна
  • Лопухин Алексей Алексеевич
  • Савостин Александр Викторович
RU2460174C1

Иллюстрации к изобретению RU 2 628 449 C1

Реферат патента 2017 года Способ изготовления многоэлементного ИК фотоприемника

Изобретение относится к способу изготовления многоэлементных или матричных фотоприемников на основе антимонида индия. Многоэлементный фотоприемник на основе антимонида индия включает матрицу фоточувствительных элементов (МФЧЭ) с антиотражающим покрытием на освещаемой стороне фоточувствительных элементов (ФЧЭ), соединенных микроконтактами со схемой считывания. Предлагаемый способ включает пассивацию освещаемой поверхности ФЧЭ перед формированием антиотражающего покрытия, заключающуюся в том, что перед напылением антиотражающего покрытия с поверхности МФЧЭ ионным травлением удаляется слой собственного окисла без разгерметизации вакуумной камеры, что позволяет уменьшить скорость поверхностной рекомбинации фотогенерированных носителей тока и тем повысить квантовую эффективность и устранить захват носителей медленными состояниями. Изобретение обеспечивает повышение чувствительности, улучшение однородности параметров матричных фотоприемников в серийном производстве за счет повышения квантовой эффективности фоточувствительных элементов. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 628 449 C1

1. Способ изготовления многоэлементного ИК фотоприемника на основе антимонида индия, включающий изготовление матрицы фоточувствительных элементов (МФЧЭ) с тонким поглощающим слоем, соединенной с мультиплексором индиевыми микроконтактами, с нанесенным на тыльную сторону МФЧЭ антиотражающим покрытием, отличающийся тем, что перед напылением антиотражающего покрытия с поверхности МФЧЭ бомбардировкой положительно заряженными ионами удаляется слой собственного окисла с неоднородно распределенным встроенным зарядом и формируется слой с однородно распределенным встроенным зарядом.

2. Способ изготовления многоэлементного ИК фотоприемника по п.1, отличающийся тем, что бомбардировка положительно заряженными ионами поверхности ФЧЭ выполняется в процессе высокочастотного катодного распыления ионами аргона при плотности потока мощности 0,14÷0,2 Вт/см2 продолжительностью 5 минут.

3. Способ изготовления многоэлементного ИК фотоприемника по п.1, отличающийся тем, что антиотражающее покрытие формируют магнетронным напылением сульфида цинка со скоростью осаждения 15-25 нм/мин.

Документы, цитированные в отчете о поиске Патент 2017 года RU2628449C1

МНОГОЭЛЕМЕНТНЫЙ ИК ФОТОПРИЕМНИК 2012
  • Филачев Анатолий Михайлович
  • Болтарь Константин Олегович
  • Бурлаков Игорь Дмитриевич
  • Патрашин Александр Иванович
  • Яковлева Наталья Ивановна
RU2519024C1
СПОСОБ СБОРКИ ИК-ФОТОПРИЕМНИКА 2013
  • Болтарь Константин Олегович
  • Поварихина Вера Васильевна
  • Иродов Никита Александрович
RU2526489C1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
US 5227656 A, 13.07.1993.

RU 2 628 449 C1

Авторы

Седнев Михаил Васильевич

Лопухин Алексей Алексеевич

Атрашков Антон Станиславович

Даты

2017-08-16Публикация

2016-11-02Подача