Устройство для определения фазовых проницаемостей Российский патент 2017 года по МПК E21B49/00 G01N15/08 

Описание патента на изобретение RU2629030C1

Изобретение относится к области исследования фазовых проницаемостей коллекторов нефти и газа и может быть использовано при решении большого числа геопромысловых задач.

Известны устройства (Иванов М.К., Калмыков Г.А., Белохин B.C. и др. Петрофизические методы исследования кернового материала. Учебное пособие в 2-х книгах. Кн. 2: Лабораторные методы петрофизических исследований кернового материала. - М.: Изд-во Моск. ун-та, 2008. - 113 с.; Инструкция по эксплуатации автоматизированного программно-измерительного комплекса для петрофизического исследования кернов ПИК-ОФП/ЭП-3. - Новосибирск: ЗАО «Геологика», 2008. - 33 с.; RU №108105, опубл. 10.09.2011; RU №2572476, опубл. 10.01.2016), позволяющие определять фазовые проницаемости коллекторов нефти и газа в пластовых условиях.

Недостатком описанных устройств является недостаточная точность определения водонасыщенности исследуемого образца горной породы (керна) в разных режимах, вычисляемая посредством измерения его электрического сопротивления.

Известно также устройство для определения фазовых проницаемостей, принимаемое за прототип (Добрынин В.М., Ковалев А.Г., Кузнецов A.M. и др. Фазовые проницаемости коллекторов нефти и газа. - М.: ВНИИОЭНГ, 1982. - Обз. инф. Сер. «Геология, геофизика и разработка нефтяных месторождений». - 56 с.), которое содержит кернодержатель, предназначенный для установки в нем в резиновой манжете исследуемого образца, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы, обеспечивающие подачу в образец нефти и воды при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, дифференциальный манометр для измерения перепада давления на исследуемом образце.

Недостатком описанного устройства также является недостаточная точность определения водонасыщенности исследуемого образца посредством измерения его электрического сопротивления.

При фильтрации через образец двух фаз (нефти и воды) жидкость плунжерными насосами подается дискретно, достаточного смешения нефти и воды не происходит. Таким образом, на чувствительную часть измерителя сопротивления поочередно попадают либо порция нефти, либо порция воды, что вызывает значительные колебания величины измеряемого сопротивления.

Задачей предлагаемого устройства является повышение точности измерения электрического сопротивления образца, что в свою очередь обеспечивает повышение точности определения его водонасыщенности.

Решение указанной задачи достигается тем, что, согласно известному устройству, включающему кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, в предлагаемом устройстве во входном трубопроводе (трубопроводах) установлен блок для смешивания рабочих жидкостей.

При прохождении нефти и воды через блок для смешивания рабочих жидкостей обеспечивается более полное смешивание фаз, подаваемая в образец жидкость становится более однородной, что приводит к уменьшению колебаний величины измеряемого сопротивления керна. Тип и конструктивные размеры блока для смешивания рабочих жидкостей определяются в процессе опытно-конструкторских работ в соответствии с техническими характеристиками установки.

На чертеже изображена гидравлическая схема предлагаемого устройства.

Устройство включает кернодержатель 1 с установленным в нем в резиновой манжете исследуемым образцом, термостат 2, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы 3 и 4, обеспечивающие подачу в образец соответственно нефти и воды при пластовом давлении, насос для создания горного давления 5, входной 6 и выходной 7 трубопроводы прокачиваемых через образец жидкостей, блок смешивания рабочих жидкостей 8, входной 9 и выходной 10 трубопроводы системы горного давления (обжима), контейнеры с рабочими жидкостями 11, регулятор противодавления 12, мерную колбу для измерения уровня жидкости на выходе из кернодержателя 13, датчики давления 14, дифференциальный манометр 15 для измерения перепада давления на исследуемом образце, измеритель сопротивления 16.

Устройство работает следующим образом.

Рабочая жидкость (вода, нефть или их смеси в разных соотношениях) плунжерными насосами высокого давления 3 и 4 подается во входной трубопровод 6, проходит через блок смешивания рабочих жидкостей 8 и поступает на вход кернодержателя 1. При прохождении нефти и воды через блок для смешивания рабочих жидкостей 8 происходит смешивание фаз, что приводит к быстрой стабилизации электрического сопротивления образца и более точному измерению его значений.

Прокачка на каждом режим продолжается до стабилизации значений перепада давления и электрического сопротивления на исследуемом образце, фиксируемых по показаниям дифференциального манометра 15 и измерителя сопротивления 16. Число режимов должно быть не менее 5.

По измеренным соотношениям перепада давления для фиксированных соотношений нефти и воды рассчитываются фазовые проницаемости по уравнению Дарси:

где i - режим (расход по нефти и воде);

j - фаза (вода, нефть);

Q - расход флюида, мл/с;

μ - вязкость флюида, мПа⋅с;

L - длина образца, м;

ΔР - разность давлений на образце (дифференциальное давление), кПа;

F - площадь поперечного сечения образца, м2.

По измеренным значениям электрического сопротивления определяется параметр насыщения РH:

где: Ri - электрическое сопротивление образца на i-том режиме, Ом;

R100 - электрическое сопротивление образца при 100%-й фильтрации воды, Ом;

а, n - константы, которые определяются экспериментально из следующей системы уравнений:

- начальная водонасыщенность;

mц - масса образца после центрифугирования; г

mн - масса насыщенного образца, г;

mс - масса сухого образца, г;

Sвк - конечная водонасыщенность, находится в конце эксперимента при помощи аппарата Загса.

Вычислив параметры а, n можно определить значение водонасыщенности при фильтрации любого соотношения нефти и воды.

Использование предложенного устройства позволит увеличить точность определения водонасыщенности за счет повышения точности измерения сопротивления образца при проведении исследования фазовых проницаемостей.

Похожие патенты RU2629030C1

название год авторы номер документа
Устройство для определения фазовых проницаемостей 2022
  • Ваганов Юрий Владимирович
  • Григорьев Борис Владимирович
  • Поточняк Игорь Романович
  • Воробьев Владимир Викторович
RU2803430C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ФАЗОВОЙ ПРОНИЦАЕМОСТИ 2014
  • Воробьев Владимир Викторович
  • Григорьев Борис Владимирович
RU2572476C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОБРАЗЦОВ ГОРНЫХ ПОРОД 2007
  • Афиногенов Юрий Алексеевич
RU2343281C1
Автоматизированная установка для исследований фильтрационных пластовых процессов 2021
  • Соколов Александр Федорович
  • Ваньков Валерий Петрович
  • Алеманов Александр Евгеньевич
  • Троицкий Владимир Михайлович
  • Мизин Андрей Витальевич
  • Монахова Ольга Михайловна
  • Рассохин Андрей Сергеевич
  • Николашев Вадим Вячеславович
  • Костевой Никита Сергеевич
  • Николашев Ростислав Вадимович
  • Скороход Роман Андреевич
  • Курочкин Александр Дмитриевич
  • Усанов Александр Викторович
  • Алексеевич Михаил Юрьевич
  • Чураков Илья Михайлович
  • Колесников Максим Владимирович
  • Скороход Наталья Владимировна
RU2775372C1
Устройство для определения фазовых проницаемостей и соответствующих насыщенностей образцов горных пород 2017
  • Пуртов Олег Викторович
  • Ложкин Михаил Георгиевич
RU2660772C1
Фильтрационная установка для физического моделирования процессов вытеснения нефти 2018
  • Мохов Михаил Альбертович
  • Вербицкий Владимир Сергеевич
  • Деньгаев Алексей Викторович
  • Игревский Леонид Витальевич
  • Ламбин Дмитрий Николаевич
  • Грачев Вячеслав Валерьевич
  • Федоров Алексей Эдуардович
  • Ракина Анастасия Геннадьевна
RU2686139C1
Установка для исследования трещины в керне в условиях, приближенных к пластовым 2022
  • Алексеевич Михаил Юрьевич
  • Курочкин Александр Дмитриевич
  • Костевой Никита Сергеевич
  • Скороход Роман Андреевич
  • Николашев Вадим Вячеславович
  • Николашев Ростислав Вадимович
RU2782650C1
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ ПОРОДЫ 2007
  • Скрипкин Антон Геннадьевич
RU2360233C1
Способ определения относительных фазовых проницаемостей при двухфазной фильтрации 1989
  • Губанов Юрий Семенович
  • Малахов Василий Федорович
  • Нестеренко Николай Юрьевич
SU1749779A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНАСЫЩЕННОСТИ КЕРНА 2006
  • Скрипкин Антон Геннадьевич
  • Щемелинин Юрий Алексеевич
RU2315978C1

Иллюстрации к изобретению RU 2 629 030 C1

Реферат патента 2017 года Устройство для определения фазовых проницаемостей

Изобретение относится к области исследования фазовых проницаемостей коллекторов нефти и газа. Техническим результатом является повышение точности измерения электрического сопротивления образца, что в свою очередь обеспечивает повышение точности определения его водонасыщенности. Это достигается тем, что устройство, содержащее кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, содержит блок для смешивания рабочих жидкостей, установленный во входном трубопроводе. 1 ил.

Формула изобретения RU 2 629 030 C1

Устройство для определения фазовых проницаемостей, содержащее кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, отличающееся тем, что во входном трубопроводе установлен блок для смешивания рабочих жидкостей.

Документы, цитированные в отчете о поиске Патент 2017 года RU2629030C1

ДОБРЫНИН В.М
и др
Фазовые проницаемости коллекторов нефти и газа
Обз
инф
Сер
"Геология, геофизика и разработка нефтяных месторождений", Москва, ВНИИОЭНГ, 1988, с
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Способ выщелачивания обоженного огарка, содержащего ванадий, отработанным электролитом 1960
  • Гончаренко А.С.
SU138743A1
Способ фосфорилирования полиэтилена 1960
  • Девитаева Р.С.
  • Кузнецов Е.В.
SU143551A1
0
SU155978A1
CN 102809528 A, 05.12.2012.

RU 2 629 030 C1

Авторы

Воробьев Владимир Викторович

Григорьев Борис Владимирович

Даты

2017-08-24Публикация

2016-06-07Подача