Изобретение относится к области исследования фазовых проницаемостей коллекторов нефти и газа и может быть использовано при решении большого числа геопромысловых задач.
Известны устройства (Иванов М.К., Калмыков Г.А., Белохин B.C. и др. Петрофизические методы исследования кернового материала. Учебное пособие в 2-х книгах. Кн. 2: Лабораторные методы петрофизических исследований кернового материала. - М.: Изд-во Моск. ун-та, 2008. - 113 с.; Инструкция по эксплуатации автоматизированного программно-измерительного комплекса для петрофизического исследования кернов ПИК-ОФП/ЭП-3. - Новосибирск: ЗАО «Геологика», 2008. - 33 с.; RU №108105, опубл. 10.09.2011; RU №2572476, опубл. 10.01.2016), позволяющие определять фазовые проницаемости коллекторов нефти и газа в пластовых условиях.
Недостатком описанных устройств является недостаточная точность определения водонасыщенности исследуемого образца горной породы (керна) в разных режимах, вычисляемая посредством измерения его электрического сопротивления.
Известно также устройство для определения фазовых проницаемостей, принимаемое за прототип (Добрынин В.М., Ковалев А.Г., Кузнецов A.M. и др. Фазовые проницаемости коллекторов нефти и газа. - М.: ВНИИОЭНГ, 1982. - Обз. инф. Сер. «Геология, геофизика и разработка нефтяных месторождений». - 56 с.), которое содержит кернодержатель, предназначенный для установки в нем в резиновой манжете исследуемого образца, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы, обеспечивающие подачу в образец нефти и воды при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, дифференциальный манометр для измерения перепада давления на исследуемом образце.
Недостатком описанного устройства также является недостаточная точность определения водонасыщенности исследуемого образца посредством измерения его электрического сопротивления.
При фильтрации через образец двух фаз (нефти и воды) жидкость плунжерными насосами подается дискретно, достаточного смешения нефти и воды не происходит. Таким образом, на чувствительную часть измерителя сопротивления поочередно попадают либо порция нефти, либо порция воды, что вызывает значительные колебания величины измеряемого сопротивления.
Задачей предлагаемого устройства является повышение точности измерения электрического сопротивления образца, что в свою очередь обеспечивает повышение точности определения его водонасыщенности.
Решение указанной задачи достигается тем, что, согласно известному устройству, включающему кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, в предлагаемом устройстве во входном трубопроводе (трубопроводах) установлен блок для смешивания рабочих жидкостей.
При прохождении нефти и воды через блок для смешивания рабочих жидкостей обеспечивается более полное смешивание фаз, подаваемая в образец жидкость становится более однородной, что приводит к уменьшению колебаний величины измеряемого сопротивления керна. Тип и конструктивные размеры блока для смешивания рабочих жидкостей определяются в процессе опытно-конструкторских работ в соответствии с техническими характеристиками установки.
На чертеже изображена гидравлическая схема предлагаемого устройства.
Устройство включает кернодержатель 1 с установленным в нем в резиновой манжете исследуемым образцом, термостат 2, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы 3 и 4, обеспечивающие подачу в образец соответственно нефти и воды при пластовом давлении, насос для создания горного давления 5, входной 6 и выходной 7 трубопроводы прокачиваемых через образец жидкостей, блок смешивания рабочих жидкостей 8, входной 9 и выходной 10 трубопроводы системы горного давления (обжима), контейнеры с рабочими жидкостями 11, регулятор противодавления 12, мерную колбу для измерения уровня жидкости на выходе из кернодержателя 13, датчики давления 14, дифференциальный манометр 15 для измерения перепада давления на исследуемом образце, измеритель сопротивления 16.
Устройство работает следующим образом.
Рабочая жидкость (вода, нефть или их смеси в разных соотношениях) плунжерными насосами высокого давления 3 и 4 подается во входной трубопровод 6, проходит через блок смешивания рабочих жидкостей 8 и поступает на вход кернодержателя 1. При прохождении нефти и воды через блок для смешивания рабочих жидкостей 8 происходит смешивание фаз, что приводит к быстрой стабилизации электрического сопротивления образца и более точному измерению его значений.
Прокачка на каждом режим продолжается до стабилизации значений перепада давления и электрического сопротивления на исследуемом образце, фиксируемых по показаниям дифференциального манометра 15 и измерителя сопротивления 16. Число режимов должно быть не менее 5.
По измеренным соотношениям перепада давления для фиксированных соотношений нефти и воды рассчитываются фазовые проницаемости по уравнению Дарси:
где i - режим (расход по нефти и воде);
j - фаза (вода, нефть);
Q - расход флюида, мл/с;
μ - вязкость флюида, мПа⋅с;
L - длина образца, м;
ΔР - разность давлений на образце (дифференциальное давление), кПа;
F - площадь поперечного сечения образца, м2.
По измеренным значениям электрического сопротивления определяется параметр насыщения РH:
где: Ri - электрическое сопротивление образца на i-том режиме, Ом;
R100 - электрическое сопротивление образца при 100%-й фильтрации воды, Ом;
а, n - константы, которые определяются экспериментально из следующей системы уравнений:
- начальная водонасыщенность;
mц - масса образца после центрифугирования; г
mн - масса насыщенного образца, г;
mс - масса сухого образца, г;
Sвк - конечная водонасыщенность, находится в конце эксперимента при помощи аппарата Загса.
Вычислив параметры а, n можно определить значение водонасыщенности при фильтрации любого соотношения нефти и воды.
Использование предложенного устройства позволит увеличить точность определения водонасыщенности за счет повышения точности измерения сопротивления образца при проведении исследования фазовых проницаемостей.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для определения фазовых проницаемостей | 2022 |
|
RU2803430C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ФАЗОВОЙ ПРОНИЦАЕМОСТИ | 2014 |
|
RU2572476C2 |
Устройство для измерения относительных фазовых проницаемостей в пористой среде при ее трехфазной насыщенности | 2023 |
|
RU2822821C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОБРАЗЦОВ ГОРНЫХ ПОРОД | 2007 |
|
RU2343281C1 |
Автоматизированная установка для исследований фильтрационных пластовых процессов | 2021 |
|
RU2775372C1 |
Устройство для определения фазовых проницаемостей и соответствующих насыщенностей образцов горных пород | 2017 |
|
RU2660772C1 |
Фильтрационная установка для физического моделирования процессов вытеснения нефти | 2018 |
|
RU2686139C1 |
Установка для исследования трещины в керне в условиях, приближенных к пластовым | 2022 |
|
RU2782650C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ ПОРОДЫ | 2007 |
|
RU2360233C1 |
Способ определения относительных фазовых проницаемостей при двухфазной фильтрации | 1989 |
|
SU1749779A1 |
Изобретение относится к области исследования фазовых проницаемостей коллекторов нефти и газа. Техническим результатом является повышение точности измерения электрического сопротивления образца, что в свою очередь обеспечивает повышение точности определения его водонасыщенности. Это достигается тем, что устройство, содержащее кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, содержит блок для смешивания рабочих жидкостей, установленный во входном трубопроводе. 1 ил.
Устройство для определения фазовых проницаемостей, содержащее кернодержатель с установленным в нем в резиновой манжете исследуемым образцом, термостат, обеспечивающий поддержание постоянной температуры в исследуемом образце, плунжерные насосы для подачи в исследуемый образец рабочих жидкостей (нефти и воды) при пластовом давлении, насос для создания горного давления, трубопроводы для подачи и отвода рабочих жидкостей, регулятор противодавления, контейнеры с рабочими жидкостями, мерную колбу для измерения уровня жидкости на выходе из кернодержателя, датчики давления, дифференциальный манометр для измерения перепада давления на исследуемом образце, измеритель сопротивления образца, отличающееся тем, что во входном трубопроводе установлен блок для смешивания рабочих жидкостей.
ДОБРЫНИН В.М | |||
и др | |||
Фазовые проницаемости коллекторов нефти и газа | |||
Обз | |||
инф | |||
Сер | |||
"Геология, геофизика и разработка нефтяных месторождений", Москва, ВНИИОЭНГ, 1988, с | |||
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Способ выщелачивания обоженного огарка, содержащего ванадий, отработанным электролитом | 1960 |
|
SU138743A1 |
Способ фосфорилирования полиэтилена | 1960 |
|
SU143551A1 |
0 |
|
SU155978A1 | |
CN 102809528 A, 05.12.2012. |
Авторы
Даты
2017-08-24—Публикация
2016-06-07—Подача