Изобретение относится к способам определения защиты от молнии резервуаров нефти и нефтепродуктов при комбинированном использовании стержневых и тросовых молниеотводов.
Известны нормативные документы в области проектирования молниезащиты [РД 34.21.121 «Руководящие указания по расчету зон защиты стержневых и тросовых молниеотводов», с.4-18, СН 305-69 «Указания по проектированию и устройству молниезащиты зданий и сооружений», с.14-20, РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений», с.15-22, СО-153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», с. 14-20, ВСП 22-02-07 «Нормы по проектированию, устройству и эксплуатации молниезащиты объектов военной инфраструктуры», с.29-36, IEC 62305-3:2010 «Защита от молнии. Часть 3. Физические повреждения конструкций и опасность для жизни», с. 18-19], в которых предусматриваются способы определения зон защиты от молнии с помощью стержневых и тросовых молниеотводов. Из данных нормативных документов наиболее близкий способ определения общей зоны защиты от молнии тросовых и стержневых молниеотводов представлен в СН 305-69 «Указания по проектированию и устройству молниезащиты зданий и сооружений». При этом указанный способ имеет существенные недостатки, заключающиеся в сложности определения высот и количества фиктивных молниеотводов.
Задачей, на решение которой направлено изобретение, является разработка способа определения общей зоны защиты от молнии тросового и стержневого молниеотводов для резервуаров нефти и нефтепродуктов с учетом современных действующих нормативных документах Российской Федерации (РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений», СО-153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий).
Техническим результатом изобретения является расширение возможностей применения комбинации стержневого и тросового молниеотводов при проектировании системы защиты от молнии для резервуаров нефти и нефтепродуктов.
В изобретении задача решается, а технический результат достигается за счет того, что в способе определения общей зоны защиты от молнии тросового и стержневого молниеотводов для резервуаров нефти и нефтепродуктов измеряют высоту стержневого молниеотвода, высоту провиса тросового молниеотвода и наименьшее расстояние между стержневым и тросовым молниеотводом; реальные геометрические параметры тросового молниеотвода заменяют на фиктивные, рассматривая его как совокупность стержневых молниеотводов, расположенных на некотором расстоянии друг от друга, причем высоту фиктивных молниеотводов принимают равной высоте провиса тросового молниеотвода, а расстояние между фиктивными молниеотводами принимается равным не более полуторной их высоте; определяют наибольшее расстояние, при котором сохраняется взаимодействие между тросовым и стержневым молниеотводами и число пар «стержневой молниеотвод - фиктивный стержневой молниеотвод», причем число пар определяется полуторной высотой провиса тросового молниеотвода; для каждой из пар «стержневой молниеотвод - фиктивный стержневой молниеотвод» определяют внешние и внутренние области зоны защиты.
Изобретение поясняется фиг. 1-3.
На фиг. 1 изображена общая зона защиты от молнии тросового и стержневого молниеотводов (вертикальная проекция);
на фиг. 2 - общая зона защиты от молнии тросового и стержневого молниеотводов (горизонтальная проекция);
на фиг. 3 - зона защиты от молнии резервуара, расположенного между стержневых и тросовым молниеотводами.
На фиг. 1-3 позициями обозначено:
1 - стержневой молниеотвод; 2 - тросовый молниеотвод; 3 - внешние габариты общей зоны защиты от молнии тросового и стержневого молниеотводов; 4 - внешние габариты зоны защиты от молнии тросового и стержневого молниеотводов на уровне земли (горизонтальная проекция); 5 - внешние габариты зоны защиты от молнии тросового и стержневого молниеотводов на высоте hx (горизонтальная проекция); 6 - фиктивные стержневые молниеотводы, заменяющие тросовый при определении зоны защиты от молнии резервуара; 7 - зона защиты резервуара тросовым и стержневым молниеотводами, выполненная с надежностью 0,9 (заштрихованная область); h1 - высота стержневого молниеотвода (м); h2 - высота провиса тросового молниеотвода (м); hmin - минимальное значение из h1 и h2 (м); h01 - высота зоны защиты от молнии стержневого молниеотвода (м); h02 - высота зоны защиты от молнии фиктивного стержневого молниеотвода (м); h0min - минимальное значение из h01 и h02 (м); hc - высота защиты от молнии посередине между стержневым и фиктивным стержневым молниеотводами (м); hx - высота защищаемого объекта (м); r01 - радиус зоны защиты стержневого молниеотводов на уровне земли (м); r02 - радиус зоны защиты фиктивного стержневого молниеотводов на уровне земли (м); r0min - минимальное значение из r01 и r02 (м); L - наименьшее расстояние между молниеотводами (м); rx1 - радиус зоны защиты стержневого молниеотвода на высоте защищаемого объекта (м); rх2 - радиус зоны защиты фиктивного молниеотвода на высоте защищаемого объекта (м); Lmax - максимальное расстояние, при котором сохраняется взаимодействие между тросовым и стержневым молниеотводом (м); rс - максимальная полуширина зоны защиты в горизонтальном сечении на уровне земли (м), rсх - максимальная полуширина зоны защиты в горизонтальном сечении на уровне высоты защищаемого объекта (м).
Для определения общей зоны защиты от молнии тросовых и стержневых молниеотводов выполняют следующие действия:
- Определяют высоту стержневого молниеотвода h1, высоту провиса тросового молниеотвода h2 и наименьшее расстояние между стержневым и тросовым молниеотводами L (фиг. 1). Для существующих молниеотводов высота измеряется любым измерительным инструментом, а при проектировании высота выбирается в соответствии с типовыми проектными решениями.
- Для проведения необходимых расчетов тросовый молниеотвод рассматривают как совокупность фиктивных стержневых молниеотводов, расположенных на некотором расстоянии друг от друга. Высоту фиктивных молниеотводов принимают равной высоте провиса тросового молниеотвода h2, что обеспечивает гарантированный уровень защиты от молнии при колебаниях тросового молниеотвода. Расстояние между фиктивными молниеотводами принимается равное полуторной их высоте по причине того, что зоны молниезащиты тросового и стержневых молниеотводов именно при таком расстоянии становятся тождественными. Корректность замены реального тросового молниеотвода фиктивными стержневыми молниеотводами подтверждена экспериментами по имитационному моделированию молнии с использованием генератора импульсных напряжений, макетов резервуаров, стержневых и тросовых молниеотводов с регулируемыми высотами и расстояниями между опор. Проведенные эксперименты (более 10000 опытов) показали, что при использовании тросового молниеотвода совместно со стержневыми молниеотводами при расчетной надежности 0,99 количество поражений защищаемых резервуаров не превышает 1%, при этом при замене тросового молниеотвода стержневыми надежность защиты не снижается.
- Определяют максимальное расстояние, при котором сохраняется взаимодействие между тросовым и стержневым молниеотводом Lmax (фиг. 2), при котором сохраняется взаимодействие между тросовым и стержневым молниеотводами. Значение Lmax определяется в зависимости от надежности защиты от молнии и высоты молниеотвода по формулам, приведенным в таблице 1 («Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003)).
При этом зоны защиты участков троса, расположенных на расстояниях меньших Lmax от стержневого молниеотвода, рассматриваются как зоны защиты пары «стержневой молниеотвод - фиктивный стержневой молниеотвод», причем число пар определяется полуторной высотой провиса тросового молниеотвода h2. При этом зоны защиты участков троса, расположенных на расстояниях больших Lmax от стержневого молниеотвода, не рассматриваются.
- Для каждой из пар «стержневой молниеотвод - фиктивный стержневой молниеотвод» определяют зоны защит от молнии по выражениям, приведенным в СО-153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», характеризуемые полуконусами с параметрами h0, r0, используя значения высот h1 и h2.
- Построение внешних областей зоны защиты пары молниеотводов производят по выражениям, приведенным в таблице 2 («Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003)).
Размеры внутренних областей определяются параметрами h01, h02 и hc, первые два из которых задают максимальную высоту зоны непосредственно у молниеотводов, а третий - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами L≤Lc граница зоны не имеет провеса (hc=h0). Для расстояний Lc≤L≤Lmax высота hc определяется по выражению
Входящие в выражение расстояния Lc1 и Lc2 вычисляются по эмпирическим формулам, приведенным в таблице 3 («Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003)) для стержневого и фиктивного молниеотводов.
Максимальную полуширину зоны rс в горизонтальном сечении на высоте hx определяют из выражения
rc=[(r01 (h01-hx)/h01)+(r01⋅(h01-hx)/h01)]/2
Длину горизонтального сечения lх на высоте hx≥hc определяют из выражения
lx=0,5⋅L⋅(h0-hx)/(h0-hc),
причем при hx<hc lx=L/2.
Ширину горизонтального сечения в центре между молниеотводами rсх на высоте hx<hc определяют из выражения
rcx=rc⋅(hc-hx)/hc.
Пример определения общей зоны защиты от молнии тросового и стержневого молниеотводов при установке нового резервуара в дополнение к существующим резервуарам.
В существующих резервуарах защита от молнии выполнена тросовым молниеотводом (h2=40 м). С целью расширения резервуарного парка планируется установка нового резервуара высотой hx=23 м, при этом систему защиты от молнии проектом планируется выполнить установкой стержневого молниеотвода высотой h2=35 м. Необходимо определить общую зону защиты от молнии от комбинации тросового и стержневого молниеотводов на высоте резервуара с надежностью 0,9.
Результаты определения общей зоны защиты от молнии тросового и стержневого молниеотводов по предлагаемому способу приведены в таблице 4.
Общая зона защиты резервуара от молнии тросового и стержневого молниеотводов на высоте резервуара приведена на фиг. 3.
Предложенный способ определения общей зоны защиты от молнии тросового и стержневого молниеотводов для резервуаров нефти и нефтепродуктов расширяет возможности применения комбинации стержневого и тросового молниеотводов при проектировании системы защиты от молнии для резервуаров нефти и нефтепродуктов.
Заявляемый способ соответствует современным действующим нормативным документам Российской Федерации (РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений», СО-153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий») и включен в проект нормативно-технического документа по обеспечению молниезащиты объектов ОАО «АК «Транснефть».
название | год | авторы | номер документа |
---|---|---|---|
Способ активной защиты специальных промышленных объектов от грозовых разрядов с применением системы молниеприёмника, анодно-катодных заземлителей и катодного преобразователя | 2015 |
|
RU2629553C2 |
НАГЛЯДНОЕ ПОСОБИЕ ДЛЯ ДЕМОНСТРАЦИИ ПРИНЦИПА РАБОТЫ ОДИНОЧНОГО ТРОСОВОГО МОЛНИЕОТВОДА | 2014 |
|
RU2567696C1 |
СПОСОБ СОВМЕСТНОЙ ЗАЩИТЫ МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ ОТ ГРОЗОВЫХ РАЗРЯДОВ И ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ | 2014 |
|
RU2584834C2 |
МОЛНИЕОТВОД | 2001 |
|
RU2186448C1 |
НАГЛЯДНОЕ ПОСОБИЕ ДЛЯ ДЕМОНСТРАЦИИ ПРИНЦИПА РАБОТЫ ОДИНОЧНОГО СТЕРЖНЕВОГО МОЛНИЕОТВОДА | 2013 |
|
RU2522060C1 |
Способ защиты промышленных объектов сгорания углеводородного топлива от грозовых разрядов и электрохимической коррозии подводящих стальных подземных сооружений для углеводородного топлива на промышленных объектах | 2016 |
|
RU2650551C2 |
СПОСОБ МОЛНИЕЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2456727C1 |
УСТРОЙСТВО ДЛЯ МОЛНИЕЗАЩИТЫ | 2009 |
|
RU2382464C1 |
МОЛНИЕОТВОД | 1995 |
|
RU2090968C1 |
СПОСОБ УПРАВЛЕНИЯ МОЛНИЕВЫМИ РАЗРЯДАМИ | 2016 |
|
RU2629010C2 |
Изобретение относится к способам определения защиты от молнии резервуаров нефти и нефтепродуктов при использовании стержневых и тросовых молниеотводов. Способ состоит в том, что определяют высоту стержневого молниеотвода, высоту провиса тросового молниеотвода и наименьшее расстояние между стержневым и тросовым молниеотводом; реальные геометрические параметры тросового молниеотвода заменяют на фиктивные, рассматривая его как совокупность стержневых молниеотводов, расположенных на некотором расстоянии друг от друга, причем высоту фиктивных молниеотводов принимают равной высоте провиса тросового молниеотвода, а расстояние между фиктивными молниеотводами принимается равным полуторной их высоте; определяют наибольшее расстояние, при котором сохраняется взаимодействие между тросовым и стержневым молниеотводами и число пар «стержневой молниеотвод - фиктивный стержневой молниеотвод», причем число пар определяется полуторной высотой провиса тросового молниеотвода; для каждой из пар «стержневой молниеотвод - фиктивный стержневой молниеотвод» определяют внешние и внутренние области зоны защиты. Способ расширяет возможности применения комбинации стержневого и тросового молниеотводов. 3 ил., 4 табл., 1 пр.
Способ определения общей зоны защиты от молнии тросового и стержневого молниеотводов для резервуаров нефти и нефтепродуктов, заключающийся в том, что определяют высоту стержневого молниеотвода, высоту провиса тросового молниеотвода и наименьшее расстояние между стержневым и тросовым молниеотводом; реальные геометрические параметры тросового молниеотвода заменяют на фиктивные, рассматривая его как совокупность стержневых молниеотводов, расположенных на некотором расстоянии друг от друга, причем высоту фиктивных молниеотводов принимают равной высоте провиса тросового молниеотвода, а расстояние между фиктивными молниеотводами принимается равным полуторной их высоте; определяют наибольшее расстояние, при котором сохраняется взаимодействие между тросовым и стержневым молниеотводами и число пар «стержневой молниеотвод - фиктивный стержневой молниеотвод», причем число пар определяется полуторной высотой провиса тросового молниеотвода; для каждой из пар «стержневой молниеотвод - фиктивный стержневой молниеотвод» определяют внешние и внутренние области зоны защиты.
УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ, СН 305-69, Москва, Стройиздат, 1970 | |||
СПОСОБ И КОМПЛЕКТ ИЗМЕРИТЕЛЬНОГО ОБОРУДОВАНИЯ ДЛЯ ОЦЕНКИ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ МОЛНИЕЗАЩИТНЫХ СИСТЕМ | 2004 |
|
RU2334239C2 |
СПОСОБ ПРЕДОТВРАЩЕНИЯ ЗЕМЛЕТРЯСЕНИЯ | 1997 |
|
RU2107933C1 |
WO 1994002980 A1, 03.02.1994. |
Авторы
Даты
2017-08-29—Публикация
2016-03-23—Подача