Изобретение относится к области наглядных пособий, в частности к наглядным пособиям для демонстрации принципа определения высоты одиночного стержневого молниеотвода, а также для изучения факторов, влияющих на высоту молниеотвода, и для экспериментального определения высоты молниеотвода методом физического моделирования.
Известно наглядное пособие для демонстрации принципа работы одиночного стержневого молниеотвода, которое представляет собой словесное (вербальное) описание (Политехнический словарь. - М.: Советская энциклопедия, 1977. С. 297). Такое пособие позволяет обучающимся понять назначение молниеотвода, но не позволяет освоить принцип определения высоты молниеотвода.
Наиболее близким по технической сущности к изобретению является наглядное пособие для демонстрации принципа определения высоты одиночного стержневого молниеотвода, включающее модели защищаемого сооружения, молниеотвода и зоны защиты. Причем модели защищаемого сооружения, молниеотвода и зоны защиты выполнены в виде плоской расчетной схемы. (Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. CO 153-34.21.122-2003. Утверждена Приказом Министерства энергетики России от 30 июня 2003 г. №280. П. 3.3.2.1., рис. 3.1.)
Такое пособие в виде плоской расчетной схемы позволяет рассчитать требуемую высоту молниеотвода, но не позволяет наглядно продемонстрировать обучающимся сам принцип определения высоты одиночного стержневого молниеотвода. Это приводит к снижению качества обучения в результате плохой наглядности.
Техническим решением задачи является повышение качества обучения за счет улучшения наглядности принципа определения высоты одиночного стержневого молниеотвода.
Задача достигается тем, что в наглядном пособии для демонстрации принципа определения высоты одиночного стержневого молниеотвода, включающем модели защищаемого сооружения, молниеотвода и зоны защиты, согласно изобретению модель защищаемого объекта выполнена трехмерной, а модель зоны защиты - в виде полого тонкостенного конуса с вертикальной осью, вдоль которой расположен телескопический стержень, выходящий за пределы конуса, при этом угол при вершине конуса между его осью и боковой поверхностью равен 41-55°.
Новизну авторы и заявитель усматривают в том, модель защищаемого объекта выполнена трехмерной, а модель зоны защиты - в виде полого тонкостенного конуса с вертикальной осью, вдоль которой расположен телескопический стержень, выходящий за пределы конуса, при этом угол при вершине конуса между его осью и боковой поверхностью равен 41-55°.
Заявленное решение не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии данного решения критерию "изобретательский уровень".
Данное техническое решение может быть использовано в учебном процессе, при обучении специалистов правилам определения высоты одиночного стержневого молниеотвода с заданным местом его установки для конкретного защищаемого объекта, что позволяет сделать вывод о соответствии решения критерию "промышленная применимость".
Сущность изобретения поясняется чертежом, где приведена схема предлагаемого наглядного пособия.
Наглядное пособие включает трехмерный макет защищаемого объекта 1 в масштабе µ, расположенный на горизонтальной поверхности 2. На поверхности 2 находится точка 3 установки молниеотвода. Телескопический стержень 4 связан с моделью 5 зоны защиты, которая имеет вид кругового полого тонкостенного конуса с образующей и с вертикальной осью. Причем телескопический стержень связан с конусом в его вершине, а ось стержня совпадает с осью конуса. При надежности защиты 0,9 угол α, при вершине конуса между его осью и образующей, равен 55°. При надежности защиты 0,99 угол α, при вершине конуса между его осью и образующей, равен 45°. При надежности защиты 0,999 угол α, при вершине конуса между его осью и образующей, равен 41°. Работа происходит следующим образом.
При определении высоты одиночного стержневого молниеотвода, который должен быть установлен в точке 3 и при этом обеспечить защиту объекта 1, находящегося на поверхности 2, с надежностью 0,9 необходимо выполнить следующую последовательность действий. Телескопический стержень 4 устанавливается на максимальную длину. Основание стержня 4 помещается в точку 3 установки молниеотвода на горизонтальной поверхности 2. Конус 5 опускается вручную вниз, уменьшая длину телескопического стержня 4, до тех пор, пока конус 5 коснется модели 1 защищаемого объекта в любой точке. Измеряем h0 длину участка телескопического стержня от его основания (точка 3) до вершины конуса. Затем устанавливаем участок телескопического стержня 4, который находится над вершиной конуса 5, на длину h1, которая рассчитывается по формуле:
h1=0,12·h0 (1)
Формула (1) получена в результате ряда математических преобразований из данных таблицы 3.4 и рис.3.1 Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003. Утверждена Приказом Министерства энергетики России от 30 июня 2003 г. №280. П. 3.3.2.1).
Высота молниеотвода h в масштабе µ определяется как сумма h0 и h1:
h=h1+h0. (2)
Высота молниеотвода Н в натуральных единицах, установленного в заданной точке 3, который обеспечивает защиту объекта с надежностью 0,9, определяется с учетом масштаба µ:
Н=h·µ. (3)
Высота молниеотвода, обеспечивающая защиту объекта с надежностью 0,99, определяется аналогично описанному выше для надежности защиты 0,9, за исключением того, что используется конус углом α - 45° при вершине между осью конуса и его образующей, a h1 определяется по выражению
h1=0,25·h0. (4)
Высота молниеотвода, обеспечивающая защиту объекта с надежностью 0,999, определяется аналогично описанному выше для надежности защиты 0,9, за исключением того, что используется конус с углом α=41° при вершине между осью конуса и его образующей, a h1 определяется по выражению
h1=0,43·h0. (5)
Таким образом, наглядное пособие позволяет наглядно продемонстрировать обучающимся принцип определения высоты одиночного стержневого молниеотвода, обеспечивающего необходимую надежность защиты от 0,9 до 0,999. Обучающиеся видят отличие формы конусов защиты при разной надежности защиты, видят, что высота молниеотвода определяется по условию касания конусом защиты защищаемого объекта. Обучающиеся видят и понимают, почему высота молниеотвода различна при различной надежности защиты. Это приводит к повышению качества обучения за счет улучшения наглядности принципа определения высоты одиночного стержневого молниеотвода.
название | год | авторы | номер документа |
---|---|---|---|
НАГЛЯДНОЕ ПОСОБИЕ ДЛЯ ДЕМОНСТРАЦИИ ПРИНЦИПА РАБОТЫ ОДИНОЧНОГО ТРОСОВОГО МОЛНИЕОТВОДА | 2014 |
|
RU2567696C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЩЕЙ ЗОНЫ ЗАЩИТЫ ОТ МОЛНИИ ТРОСОВОГО И СТЕРЖНЕВОГО МОЛНИЕОТВОДА ДЛЯ РЕЗЕРВУАРОВ НЕФТИ И НЕФТЕПРОДУКТОВ | 2016 |
|
RU2629370C1 |
Способ активной защиты специальных промышленных объектов от грозовых разрядов с применением системы молниеприёмника, анодно-катодных заземлителей и катодного преобразователя | 2015 |
|
RU2629553C2 |
УСТРОЙСТВО ДЛЯ ДЕМОНСТРАЦИИ СЕЧЕНИЙ ГЕОМЕТРИЧЕСКИХ ОБЪЕМНЫХ ПРОСТРАНСТВЕННЫХ ТЕЛ И СВЕТОВОЙ ИМИТАТОР СЕКУЩЕЙ ПЛОСКОСТИ ДЛЯ ДЕМОНСТРАЦИИ ГЕОМЕТРИЧЕСКИХ ОБЪЕМНЫХ ПРОСТРАНСТВЕННЫХ ТЕЛ | 2001 |
|
RU2183354C1 |
Способ молниезащиты | 1978 |
|
SU723804A1 |
СПОСОБ СОВМЕСТНОЙ ЗАЩИТЫ МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ ОТ ГРОЗОВЫХ РАЗРЯДОВ И ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ | 2014 |
|
RU2584834C2 |
Способ защиты промышленных объектов сгорания углеводородного топлива от грозовых разрядов и электрохимической коррозии подводящих стальных подземных сооружений для углеводородного топлива на промышленных объектах | 2016 |
|
RU2650551C2 |
Молниеприемник | 1989 |
|
SU1676117A1 |
СПОСОБ МОЛНИЕЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2456727C1 |
МОЛНИЕОТВОД | 1996 |
|
RU2101819C1 |
Изобретение относится к области образования и наглядных учебных пособий, в частности к наглядным пособиям для демонстрации принципа работы одиночного стержневого молниеотвода. Модель защищаемого объекта выполнена трехмерной. Модель зоны защиты выполнена в виде полого тонкостенного конуса с вертикальной осью, вдоль которой расположен телескопический стержень, выходящий за пределы конуса. При этом угол при вершине конуса между его осью и боковой поверхностью равен 41-55°. Техническим результатом изобретения является обеспечение демонстрации принципа определения высоты одиночного стержневого молниеотвода. 1 ил.
Наглядное пособие для демонстрации принципа определения высоты одиночного стержневого молниеотвода, включающее модели защищаемого сооружения, молниеотвода и зоны защиты, отличающееся тем, что модель защищаемого объекта выполнена трехмерной, а модель зоны защиты - в виде полого тонкостенного конуса с вертикальной осью, вдоль которой расположен телескопический стержень, выходящий за пределы конуса, при этом угол при вершине конуса между его осью и боковой поверхностью равен 41-55°.
Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций | |||
Паровозный золотник (байпас) | 1921 |
|
SU153A1 |
Способ обработки медных солей нафтеновых кислот | 1923 |
|
SU30A1 |
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО ГЛИНОЗЕМА И ЕГО СОЛЕЙ ИЗ СИЛИКАТОВ ГЛИНОЗЕМА, ПРОСТЫХ ГЛИН И. Т.П. | 1915 |
|
SU280A1 |
АЭРОСТАТНАЯ АНТЕННА ЗОНТИЧНОГО ТИПА | 2007 |
|
RU2340986C1 |
JP 2005099942 A, 14.04.2005 | |||
CN 102306392 A, 04.01.2012 | |||
CN 103021237 A, 03.04.2013 | |||
JP 2012122839 A, 28.06.2012 |
Авторы
Даты
2014-07-10—Публикация
2013-04-30—Подача