АБСОРБЕР СОЛНЕЧНОГО КОЛЛЕКТОРА Российский патент 2017 года по МПК F24J2/48 F24J2/24 

Описание патента на изобретение RU2629766C1

Изобретение относится к гелиоэнергетике и может быть использовано в гелиосистемах отопления и горячего водоснабжения, использующих плоские солнечные коллекторы, а именно относится к конструкции элемента, поглощающего солнечное излучение (абсорберу солнечного коллектора).

Известен абсорбер солнечного коллектора (патент RU 112363 U, опубл. 10.01.2012), характеризующийся тем, что выполнен в виде соединенных друг с другом верхнего и нижнего листов и содержит, по меньшей мере, один патрубок для подвода теплоносителя, соединенный с желобом для подвода теплоносителя, и, по меньшей мере, один патрубок для отвода теплоносителя, соединенный с желобом для отвода теплоносителя, при этом нижний лист выполнен в виде плоской пластины с выполненными на ее двух противоположных концах отверстиями, под которыми с одного конца расположен желоб для подвода теплоносителя, а с другого - желоб для отвода теплоносителя, верхний лист выполнен гофрированным, каждая гофра которого образует канал для прохода теплоносителя.

Недостатком решения является необходимость изготовить специальную производственную линию для производства. Специальный монтажный стол, кондуктор с прижимами и прочую технологическую оснастку.

Также в данном устройстве присутствует высокая энергоёмкость при изготовлении, так как нужно сразу несколько стержней для точечной сварки.

Наиболее близким решением является солнечный абсорбер (патент RU 2197687, опубл. 27.01.2003), содержащий по меньшей мере одну жидкостную трубу, оба конца которой соединены с коллекторными трубами, по крайней мере одну теплоприемную панель и одну дополнительную панель, перекрывающую зазор между коллекторной трубой и торцем теплоприемной панели, отличающийся тем, что каждая жидкостная труба выполнена из теплопроводящего материала зацело с теплоприемной панелью, а каждая коллекторная труба снабжена плоской наклонной площадкой, выполненной зацело с коллекторной трубой из теплопроводящего материала по всей длине коллекторной трубы для крепления дополнительной панели.

Недостатками прототипа являются:

- высокая металлоёмкость всех суммарных элементов абсорбера и как следствие снижение эффективности нагрева (теплопередачи солнечного тепла теплоносителю солнечного коллектора) в осенне-весенний период, из за низкой солнечной инсоляции; при такой металлоёмкости, эффективно использовать для изготовления абсорбера серебро, для более высокой теплопередачи, но это очень дорого;

- сложность изготовления фасонных коллекторных труб и как следствие удорожание в их изготовлении;

- сложности в стыковке, подгонке и монтаже всех элементов абсорбера солнечного коллектора;

- увеличенный диаметр жидкостных труб и как следствие увеличение по времени теплопередачи жидкости-теплоносителю, так как их всего четыре, а в обычных плоских солнечных коллекторах используется от семи до девяти.

В целом недостатки известных и иных абсорберов заключаются в том, что к алюминиевому или медному листу с внутренней стороны приваривается или припаивается медная трубка по типу «лира» или «меандр» и солнечное тепло передаётся от листа абсорбера к трубке по одной тонкой линии в месте сварки или пайки и только потом, от трубки абсорбера, тепло передаётся теплоносителю. При такой компоновке, часть солнечного тепла передаётся (рассеивается) в окружающую среду. Это происходит через элементы корпуса коллектора, часть тепла передаётся воздушным путём, главным образом в воздушной полости, между стеклом корпуса коллектора и листом абсорбера, что существенно снижает теплопередачу теплоносителю.

Задачей изобретения является устранение недостатков, присущих известным решениям.

Техническим результатом являются: 

- более высокая эффективность в теплопередаче и снижение теплопотерь в окружающую среду;

- простота элементов конструкции и изготовления;

- повышение её надёжности;

- увеличение ёмкости коллектора для теплоносителя, без потери энергоэффективности и теплопроизводительности;

- низкая металлоёмкость элементов абсорбера.

Указанный технический результат достигается за счет того, что заявлен солнечный абсорбер, содержащий магистральные жидкостные трубы, концы которой соединены с коллекторными трубами, абсорбционный лист, причем каждая жидкостная труба и абсорбционные листы выполнены из одного теплопроводящего материала, отличающийся тем, что каждая магистральная жидкостная труба выполнена в виде профиля, имеющего боковые бортики вдоль всей длины, а высота профиля меньше 1/3 ширины торцевой части профиля, внутри профиль разделен перегородками, причем на боковые бортики профиля уложены и приварены сварным соединением по всей длине абсорбционные листы.

Предпочтительно, все элементы конструкции изготовлены из алюминиевых сплавов и проварены аргонной сваркой таким образом, что образуют единую цельную конструкцию.

Предпочтительно, перегородки внутри профиля выполнены таким образом, что каждый канал профиля, образованный перегородками, с торца имеет форму овала или прямоугольника с закругленными краями.

Краткое описание чертежей

На Фиг.1 показаны составные элементы солнечного абсорбера.

На Фиг.2 показано устройство абсорбера (а - вид с торца в разрезе, б – вид края абсорбера с торца в разрезе, в – вид сверху).

На Фиг.3 показан пример выполнения профиля магистральной трубы.

Осуществление изобретения

Заявленное решение может быть реализовано посредством изготовления конструкции солнечного абсорбера. Абсорбер содержит магистральные жидкостные трубы 2. Их концы соединены с коллекторными трубами 1. Соединение может быть выполнено через отверстия 4 в магистральных трубах 2, которые изготавливают по форме профиля коллекторных труб 1.

Каждая жидкостная труба 1 и абсорбционные листы 3 выполнены из одного теплопроводящего материала.

Новизной является то, что каждая магистральная жидкостная труба 1 выполнена в виде профиля, имеющего боковые бортики 7 вдоль всей длины. Также высота профиля h меньше 1/3 ширины d торцевой части профиля. Внутри профиль разделен перегородками 5, причем на боковые бортики 7 профиля 1 уложены и приварены сварным соединением по всей длине абсорбционные листы 3. Перегородки 5 внутри профиля могут быть выполнены таким образом, что каждый канал 6 профиля, образованный перегородками 5, с торца имеет форму овала или прямоугольника с закругленными краями.

Все элементы конструкции могут быть изготовлены из алюминиевых сплавов и проварены аргонной сваркой таким образом, что образуют единую цельную конструкцию.

Описанная конструкция обеспечивает низкую металлоёмкость и, соответственно, более высокую эффективность в теплопередаче, которая дает снижение теплопотерь в окружающую среду.

Простота элементов конструкции абсорбера достигается наличием всего 3 основных элементов, а для производства абсорбера достаточными условиями являются обычный слесарный верстак и монтажный стол.

Меньшее количество сварных швов в конструкции повышает её надёжность.

За счёт оптимально разработанного профиля коллекторной трубы 1, высота которой h меньше 1/3 ширины d торцевой части, а внутри профиль разделен перегородками 5, увеличивается ёмкость коллектора для теплоносителя, без потери эффективности теплопроизводительности. Это очень важно, так как при меньшем объёме теплоносителя в абсорбере солнечного коллектора вырастает разница в температуре между теплоносителем и окружающей средой, так называемая температурная дельта. Это приводит к тому, что часть тепла от абсорбера солнечного коллектора рассеивается в окружающую среду. В заявленной конструкции эта проблема решена.

За счет особой конструкции профиля коллекторной трубы 1 происходит достаточно быстрая теплопередача солнечного тепла к теплоносителю, непосредственно от металлической поверхности жидкостной трубы абсорбера к жидкости-теплоносителю. Перегородки 5 необходимы для того, чтобы увеличить теплопередачу жидкости-теплоносителю, сдерживать давление на верхние и нижние стенки профиля, а так же нагрузку на них как каркаса абсорбера, поскольку ширина d торцевой части трубы как минимум на 2/3 больше высоты самого профиля. Именно такие пропорции или еще большая ширина d позволяют достичь максимальной теплопередачи солнечного тепла от абсорбционных листов 3 через каналы 6 внутри коллекторной трубы 1 к теплоносителю, в сравнении с обычной круглой трубой.

Количество жидкостных коллекторных труб рассчитано так, что между двумя такими трубами 1 установлен один абсорбционный лист 3, причем установлен на бортики 7 профиля простой укладкой, с последующей пайкой или проваркой по всей длине коллекторной трубы. Это повышает степень надёжности абсорбера из-за малого количества соединений и как следствие достигается простота в изготовлении, по отношению к существующим аналогам.

Сам профиль коллекторной трубы 1 прост в изготовлении. Его можно выполнить заранее требуемой формы с уже выполненными внутри каналами 6, образованными перегородками 5.

Это существенно снижает затраты на изготовление изделия, затраты на расходные материалы и аргонную сварку, при условии, если вваривать по 4 трубки по отдельности, вместо одной. Один профиль в заявленном решении заменяет как минимум четыре трубки своими четырьмя каналами.

При таком техническом решении энергоэффективность абсорбера не снижается, так как солнечная инсоляция передаётся на всю поверхность плоскоовальной трубки, а не по одной тонкой линии, в месте сопряжения трубок и листа абсорбера, в традиционных абсорберах солнечных коллекторов.

Излучаемое солнечное тепло, сразу, непосредственно полностью, по всей поверхности каналов 6 передаётся жидкости теплоносителя, циркулирующей внутри каналов 6 коллекторной трубы 1. Дополнительное усиление теплопередачи происходит за счёт того, что между коллекторными трубами 1 уложены и проварены по всей длине (для лучшей теплопередачи) абсорбционные листы 3, которые также абсорбируют солнечное излучение и передают его на каналы 6 через стенки корпуса коллекторной трубы 1.

Таким образом, солнечная теплопередача происходит по всей поверхности коллекторной трубы 1 и передаётся непосредственно сразу к жидкости-теплоносителю, без промежуточных слоёв металла и воздуха. Усиление нагрева жидкости-теплоносителя обеспечивается за счёт абсорбционных листов 3. Конструкция абсорбера, представляет собой единую сварную конструкцию из отдельно изготовленных элементов.

Похожие патенты RU2629766C1

название год авторы номер документа
СОЛНЕЧНЫЙ АБСОРБЕР 2000
  • Дударев Н.В.
  • Куранов Е.Г.
  • Никитин В.И.
  • Реш Г.Ф.
RU2197687C2
ТЕПЛОПРИЕМНАЯ ПАНЕЛЬ СОЛНЕЧНОГО КОЛЛЕКТОРА 2010
  • Максименко Александр Александрович
  • Лобанов Михаил Викторович
  • Ховив Дмитрий Александрович
  • Зайцев Сергей Витальевич
  • Харин Алексей Николаевич
RU2450217C2
СОЛНЕЧНЫЙ ВОЗДУХОНАГРЕВАТЕЛЬ 2016
  • Дибиров Яхя Алиевич
  • Алхасов Алибек Басирович
  • Дибиров Магомед Гаджимагомедович
  • Дибиров Камиль Яхяевич
  • Дибирова Маржанат Магомедовна
  • Ильясов Амир Маратович
RU2680639C2
АВТОМАТИЗИРОВАННЫЙ СОЛНЕЧНЫЙ КОЛЛЕКТОР ЭКОНОМ-КЛАССА 2014
  • Голощапов Владлен Михайлович
  • Щербатов Владимир Викторович
  • Баклин Андрей Александрович
  • Рябихин Сергей Петрович
  • Асанина Дарья Андреевна
  • Васильева Ирина Васильевна
RU2560850C1
СОЛНЕЧНАЯ КОМБИНИРОВАННАЯ ЭЛЕКТРОСТАНЦИЯ 1995
  • Волков Э.П.
  • Поливода А.И.
  • Поливода Ф.А.
RU2111422C1
СОЛНЕЧНЫЙ МОДУЛЬ И КОМБИНИРОВАННАЯ СОЛНЕЧНО-ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА НА ЕГО ОСНОВЕ 2010
  • Варфоломеев Сергей Дмитриевич
  • Ковалев Дмитрий Александрович
  • Мисин Вячеслав Михайлович
  • Петинов Олег Всеволодович
  • Проскуряков Александр Александрович
  • Шевалеевский Олег Игоревич
RU2455584C1
СОЛНЕЧНЫЙ КОЛЛЕКТОР (ВАРИАНТЫ) И СПОСОБ ИЗГОТОВЛЕНИЯ ОБОЛОЧКИ СОЛНЕЧНОГО КОЛЛЕКТОРА 2007
  • Казанджан Борис Иванович
RU2329437C1
ЩЕЛЕВОЙ ТЕПЛООБМЕННИК 2011
  • Заика Александр Олегович
RU2472089C1
Модульная солнечная когенерационная установка 2020
  • Бекиров Эскендер Алимович
  • Каркач Дмитрий Владимирович
RU2767046C1
КОЛЛЕКТОР СОЛНЕЧНЫЙ ДВУХСТОРОННИЙ 2014
  • Золотов Александр Николаевич
  • Цынаева Екатерина Александровна
  • Алиуллов Руслан Наилевич
  • Линчук Ксения Александровна
  • Батраков Александр Александрович
  • Давыдов Денис Николаевич
RU2569780C1

Иллюстрации к изобретению RU 2 629 766 C1

Реферат патента 2017 года АБСОРБЕР СОЛНЕЧНОГО КОЛЛЕКТОРА

Изобретение относится к гелиоэнергетике и может быть использовано в гелиосистемах отопления и горячего водоснабжения, использующих плоские солнечные коллекторы. Изобретение относится к конструкции абсорбера солнечного коллектора. Солнечный абсорбер содержит магистральные жидкостные трубы, концы которых соединены с коллекторными трубами, абсорбционный лист. Каждая жидкостная труба и абсорбционные листы выполнены из одного теплопроводящего материала. Каждая магистральная жидкостная труба выполнена в виде профиля, имеющего боковые бортики вдоль всей длины, высота профиля меньше 1/3 ширины торцевой части профиля. Внутри профиль разделен перегородками, причем на боковые бортики профиля уложены и приварены сварным соединением по всей длине абсорбционные листы. Изобретение должно обеспечить высокую эффективность теплопередачи, снизить теплопотери в окружающую среду. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 629 766 C1

1. Солнечный абсорбер, содержащий магистральные жидкостные трубы, концы которых соединены с коллекторными трубами, абсорбционный лист, причем каждая жидкостная труба и абсорбционные листы выполнены из одного теплопроводящего материала, отличающийся тем, что каждая магистральная жидкостная труба выполнена в виде профиля, имеющего боковые бортики вдоль всей длины, а высота профиля меньше 1/3 ширины торцевой части профиля, внутри профиль разделен перегородками, причем на боковые бортики профиля уложены и приварены сварным соединением по всей длине абсорбционные листы.

2. Солнечный абсорбер по п.1, отличающийся тем, что все элементы конструкции изготовлены из алюминиевых сплавов и проварены аргонной сваркой таким образом, что образуют единую цельную конструкцию.

3. Солнечный абсорбер по п.1 или 2, отличающийся тем, что перегородки внутри профиля выполнены таким образом, что каждый канал профиля, образованный перегородками, с торца имеет форму овала или прямоугольника с закругленными краями.

Документы, цитированные в отчете о поиске Патент 2017 года RU2629766C1

СОЛНЕЧНЫЙ АБСОРБЕР 2000
  • Дударев Н.В.
  • Куранов Е.Г.
  • Никитин В.И.
  • Реш Г.Ф.
RU2197687C2
СОЛНЕЧНЫЙ КОЛЛЕКТОР 2003
  • Страшко Виталий Васильевич
  • Подлепич В.Ю.
  • Безнощенко Дмитрий Валентинович
RU2258874C2
ЖИДКОСТЬ ДЛЯ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА 0
SU403844A1
Шкив с самоустанавливающейся ступицей 1930
  • Щукин Н.Д.
SU21601A1

RU 2 629 766 C1

Авторы

Плотницкий Игорь Олегович

Даты

2017-09-01Публикация

2016-02-25Подача