Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием Российский патент 2017 года по МПК A61B17/58 A61F2/30 A61L27/42 A61L27/30 B82B1/00 

Описание патента на изобретение RU2632761C1

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии, а именно к ортопедическим имплантатам из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием, в том числе внутрикостным имплантатам для крупных и мелких суставов, а также элементов крепления позвоночника и длинных костей скелета пациента, и может быть использовано при хирургическом лечении пациентов в условиях травматолого-ортопедических, хирургических и других стационаров.

Известны различные конструкции ортопедических имплантатов из титана и нержавеющей стали, в том числе с покрытиями с антибактериальным эффектом (см. патент РФ №2582980, МПК А61В 17/74, 27.04.2016 г., патент РФ №2580978, МПК А61В 17/76, 10.04.2016 г., патент РФ №2361623, МПК A61L 27/06, 20.07.2009 г., патент РФ №2472532, МПК A61L 27/30, 20.01.2013 г.).

Однако известные ортопедические имплантаты при своем использовании обладают следующими недостатками:

- не обеспечивают высокие антиадгезивные свойства подготовленного к применению металлического ортопедического имплантата,

- не препятствуют образованию бактериальной биопленки на поверхности металлического ортопедического имплантата,

- не обеспечивают высокие антибактериальные свойства подготовленного к применению металлического ортопедического имплантата,

- не обеспечивают высокую биологическую совместимость в различных физиологических средах организма пациента,

- не обеспечивают надежную защиту поверхности имплантированного металлического ортопедического имплантата от возникновения процессов перипротезной инфекции.

Задачей изобретения является создание ортопедического имплантата из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием.

Техническим результатом является надежное обеспечение высоких антиадгезивных свойств подготовленного к применению металлического ортопедического имплантата, надежное препятствие образованию бактериальной биопленки на поверхности металлического ортопедического имплантата в процессе его эксплуатации, обеспечение высоких антибактериальных свойств подготовленного к применению металлического ортопедического имплантата, надежное обеспечение высокой биологической совместимости в различных физиологических средах организма пациента, а также обеспечение надежной защиты поверхности имплантированного металлического ортопедического имплантата от возникновения процессов перипротезной инфекции.

Технический результат достигается тем, что предложен ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, выполненный из титана и нержавеющей стали в виде внутрикостного имплантата для крупных и мелких суставов, а также в виде элементов крепления позвоночника и длинных костей скелета пациента, при этом на поверхность предварительно очищенного методом ионного травления ионами аргона ортопедического имплантата из титана и нержавеющей стали наносят плазменным напылением двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 4,5-9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм. При этом в качестве высокочистого серебра наногранул покрытия используют серебро не ниже 99,9% чистоты.

Среди существенных признаков, характеризующих предложенный ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, отличительными являются:

- нанесение на поверхность предварительно очищенного методом ионного травления ионами аргона используемого для имплантации ортопедического имплантата из титана и нержавеющей стали плазменным напылением двухкомпонентного антиадгезивного антибактериального биосовместимого нанопокрытия толщиной от 9 до 1180 нм, содержащего наногранулы шарообразной формы из высокочистого серебра размером 4,5-9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм,

- использование в качестве высокочистого серебра наногранул покрытия серебра не ниже 99,9% чистоты.

Экспериментальные исследования предложенного ортопедического имплантата из титана и нержавеющей стали с антиадгезивным антимикробным покрытием показали его высокую эффективность. Антиадгезивное антимикробное покрытие ортопедического имплантата из титана и нержавеющей стали при своем экспериментальном использовании надежно обеспечило высокие антиадгезивные свойства поверхности подготовленного к применению металлического ортопедического имплантата, обеспечило надежное препятствие образованию бактериальной биопленки на поверхности металлического ортопедического имплантата в процессе его эксплуатации, обеспечило высокие антибактериальные свойства подготовленного к применению металлического ортопедического имплантата, надежно обеспечило высокую биологическую совместимость в различных физиологических средах организма пациента, а также позволило достичь надежную защиту поверхности подготовленного к использованию для имплантации металлического ортопедического имплантата от возникновения процессов перипротезной инфекции.

Реализация предложенного ортопедического имплантата из титана и нержавеющей стали с антиадгезивным антимикробным покрытием иллюстрируется следующими практическими примерами.

Пример 1. На поверхность трех плоских образцов из титана марки ВТ-6, используемого для изготовления ортопедических имплантатов, нанесли предложенное антиадгезивное антибактериальное покрытие.

При этом использовали предварительно очищенные методом ионного травления ионами аргона образцы, на поверхность которых плазменным напылением нанесли двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 9 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 4,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,4 нм. При этом в качестве высокочистого серебра наногранул покрытия использовали серебро не ниже 99,9% чистоты.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ- 6 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRS A, E. Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд. Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°C в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ-6 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали.

Пример 2. На поверхность трех плоских образцов из нержавеющей стали медицинского назначения, используемой для изготовления ортопедических имплантатов, нанесли предложенное антиадгезивное антибактериальное покрытие.

При этом использовали предварительно очищенные методом ионного травления ионами аргона образцы, на поверхность которых плазменным напылением нанесли двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 480 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,9 нм. При этом в качестве высокочистого серебра наногранул покрытия использовали серебро не ниже 99,9% чистоты.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из нержавеющей стали медицинского назначения в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд. Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°C в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ 1-0 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали.

Пример 3. На поверхность трех плоских образцов из титана марки ВТ1-0, используемого для изготовления ортопедических имплантатов, нанесли предложенное антиадгезивное антибактериальное покрытие.

При этом использовали предварительно очищенные методом ионного травления ионами аргона образцы, на поверхность которых плазменным напылением нанесли двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 720 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 6,0 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 1,2 нм. При этом в качестве высокочистого серебра наногранул покрытия использовали серебро не ниже 99,9% чистоты.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ1-0 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд. Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°C в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ1-0 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали.

Пример 4. На поверхность трех плоских образцов из титана марки ВТ1-00, используемого для изготовления ортопедических имплантатов, нанесли предложенное антиадгезивное антибактериальное покрытие.

При этом использовали предварительно очищенные методом ионного травления ионами аргона образцы, на поверхность которых плазменным напылением нанесли двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетра-эдрического алмаза типа ta-C толщиной 0,6 нм. При этом в качестве высокочистого серебра наногранул покрытия использовали серебро не ниже 99,9% чистоты.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ1-00 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд. Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°C в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ1-00 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали.

Пример 5. На поверхность трех плоских образцов из титана марки ВТ-16, используемого для изготовления ортопедических имплантатов, нанесли предложенное антиадгезивное антибактериальное покрытие.

При этом использовали предварительно очищенные методом ионного травления ионами аргона образцы, на поверхность которых плазменным напылением нанесли двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 980 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 8,4 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетра-эдрического алмаза типа ta-C толщиной 1,2 нм. При этом в качестве высокочистого серебра наногранул покрытия использовали серебро не ниже 99,9% чистоты.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ-16 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд. Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов диско-диффузионным методом. Образцы инкубировали в термостате при температуре 36°C в течение 24 час.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ-16 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E. Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана и нержавеющей стали.

Похожие патенты RU2632761C1

название год авторы номер документа
Антиадгезивное антибактериальное покрытие для ортопедических имплантатов из титана и нержавеющей стали 2016
  • Цискарашвили Арчил Важаевич
  • Калиниченко Валерий Николаевич
  • Стрелецкий Олег Андреевич
RU2632702C1
Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали 2016
  • Стрелецкий Олег Андреевич
  • Калиниченко Валерий Николаевич
  • Цискарашвили Арчил Важаевич
RU2632706C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения 2023
  • Завидовский Илья Алексеевич
  • Стрелецкий Олег Андреевич
  • Цискарашвили Арчил Важаевич
RU2809240C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения 2017
  • Стрелецкий Олег Андреевич
  • Иваненко Илья Петрович
RU2651837C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы 2017
  • Стрелецкий Олег Андреевич
  • Иваненко Илья Петрович
RU2651836C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА УСТРОЙСТВА И ИНСТРУМЕНТЫ ДЛЯ ОСТЕОСИНТЕЗА, ОРТОПЕДИЧЕСКИЕ ИМПЛАНТАТЫ ИЗ МЕТАЛЛА 2018
  • Николаев Николай Станиславович
  • Кочаков Валерий Данилович
  • Новиков Николай Дмитриевич
RU2697855C1
АНТИБАКТЕРИАЛЬНАЯ БЕЛКОВАЯ ГУБКА ДЛЯ ХИМИОТЕРАПИИ ИНФИЦИРОВАННЫХ РАН И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2016
  • Лозинский Владимир Иосифович
  • Родионов Илья Александрович
  • Цискарашвили Арчил Важаевич
  • Еськин Николай Александрович
RU2637634C1
Технологическая установка для нанесения наноуглеродных покрытий на поверхности медицинских изделий или их частей, обладающих антибактериальными и биосовместимыми свойствами 2019
  • Стрелецкий Олег Андреевич
RU2724277C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕМЕНТНОГО СПЕЙСЕРА ДЛЯ ЭТИОТРОПНОЙ МЕСТНОЙ АНТИБАКТЕРИАЛЬНОЙ ТЕРАПИИ ПРИ ИНФЕКЦИОННЫХ ПОРАЖЕНИЯХ КОСТЕЙ И СУСТАВОВ 2020
  • Артюх Василий Алексеевич
  • Божкова Светлана Анатольевна
  • Шнейдер Ольга Вадимовна
  • Ливенцов Виталий Николаевич
  • Афанасьев Александр Витальевич
  • Кочиш Андрей Александрович
  • Торопов Сергей Сергеевич
  • Гордина Екатерина Михайловна
  • Целуйко Константин Сергеевич
  • Ваганов Глеб Вячеславович
  • Антипов Александр Павлович
RU2754075C1
Способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана 2019
  • Смирнова Лариса Александровна
  • Гусейнова Мария Арифовна
  • Саломатина Евгения Владимировна
  • Горшенин Михаил Константинович
  • Смирнова Ольга Николаевна
RU2719475C1

Реферат патента 2017 года Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием

Изобретение относится к области медицины, а именно к травматологии, ортопедии и общей хирургии. Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, выполненный из титана и нержавеющей стали в виде внутрикостного имплантата для крупных и мелких суставов, а также в виде элементов крепления позвоночника и длинных костей скелета пациента. На поверхность предварительно очищенного методом ионного травления ионами аргона ортопедического имплантата из титана и нержавеющей стали наносят плазменным напылением двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 4,5-9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм. Изобретение обеспечивает надежные высокие антиадгезивные антибактериальные свойства, надежное препятствие образованию бактериальной биопленки на поверхности металлического ортопедического имплантата в процессе его эксплуатации, высокую биологическую совместимость в различных физиологических средах организма пациента, а также надежную защиту поверхности имплантированного металлического ортопедического имплантата от возникновения процессов перипротезной инфекции. 1 з.п. ф-лы, 5 пр.

Формула изобретения RU 2 632 761 C1

1. Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антимикробным покрытием, выполненный из титана и нержавеющей стали в виде внутрикостного имплантата для крупных и мелких суставов, а также в виде элементов крепления позвоночника и длинных костей скелета пациента, отличающийся тем, что на поверхность предварительно очищенного методом ионного травления ионами аргона ортопедического имплантата из титана и нержавеющей стали наносят плазменным напылением двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра размером 4,5-9,5 нм с нанесенным на их поверхности сплошным защитным углеродным нанопокрытием из тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм.

2. Имплантат по п. 1, отличающийся тем, что в качестве высокочистого серебра наногранул покрытия используют серебро не ниже 99,9% чистоты.

Документы, цитированные в отчете о поиске Патент 2017 года RU2632761C1

Способ одновременного отделения от стояка литых деталей 1959
  • Игнатьев А.К.
SU129803A1
Устройство для строчной магнитной записи и воспроизведения сигналов на листовом носителе 1960
  • Аллон М.М.
SU135251A1
СПОСОБ ИЗГОТОВЛЕНИЯ И УСТАНОВКИ СТОМАТОЛОГИЧЕСКИХ КОНСТРУКЦИЙ 2011
  • Ураков Александр Ливиевич
  • Уракова Наталья Александровна
  • Решетников Алексей Петрович
  • Назарова Эльвина Ильфатовна
  • Липанов Алексей Матвеевич
  • Дементьев Вячеслав Борисович
RU2469640C1
RU 2064291 C1, 27.07.1996
US 2010326835 A1, 30.12.2010
DE 102009023459 A1, 09.12.2010
WO 2011053562 A2, 05.05.2011.

RU 2 632 761 C1

Авторы

Цискарашвили Арчил Важаевич

Калиниченко Валерий Николаевич

Стрелецкий Олег Андреевич

Даты

2017-10-09Публикация

2016-10-28Подача