Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали Российский патент 2017 года по МПК A61L27/06 A61L27/30 A61L27/54 C23C14/00 C23C14/58 

Описание патента на изобретение RU2632706C1

Изобретение относится к области медицины, а именно к травматологии и ортопедии, к способу нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, в том числе внутрикостные, имплантаты тазобедренных, локтевых, плечевых, коленных суставов, а также элементы крепления позвоночника и костей скелета пациента, и может быть использовано при хирургическом лечении пациентов в условиях травматолого-ортопедических, хирургических и других стационаров.

Известен способ изготовления внутрикостного имплантата с ионно-лучевой модификацией, включающий нанесение покрытия на предварительно обработанную поверхность металлического имплантата (см. патент РФ №2530568, МПК А61L 27/02, 10.10.2014 г.).

Однако известный способ при своем использовании обладает следующими недостатками:

- не обеспечивает высокие антиадгезивные свойства подготовленного к применению металлического ортопедического имплантата,

- не препятствует образованию бактериальной биопленки на поверхности металлического ортопедического имплантата,

- не обеспечивает высокие антибактериальные свойства подготовленного к применению металлического ортопедического имплантата,

- не обеспечивает высокую биологическую совместимость в различных физиологических средах организма пациента,

- не обеспечивает надежную защиту поверхности имплантированного металлического ортопедического имплантата от возникновения процессов перипротезной инфекции.

Задачей изобретения является создание способа нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали.

Техническим результатом является надежное обеспечение высоких антиадгезивных свойств подготовленного к применению металлического ортопедического имплантата, надежное препятствие образованию бактериальной биопленки на поверхности металлического ортопедического имплантата, обеспечение высоких антибактериальных свойств подготовленного к применению металлического ортопедического имплантата, надежное обеспечение высокой биосовместимости в различных физиологических средах организма пациента, а также обеспечение надежной защиты поверхности имплантированного металлического ортопедического имплантата от возникновения процессов перипротезной инфекции.

Технический результат достигается тем, что предложен способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающий нанесение покрытия на предварительно обработанную поверхность металлического имплантата, при этом поверхность металлических имплантатов из титана и из нержавеющей стали подвергают очистке методом ионного травления в герметичной камере, которую предварительно вакуумируют до остаточного давления 9⋅10-5 - 1⋅10-6 Торр, с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 4⋅10-4 - 1⋅10-3 Торр, а ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут, затем на поверхность ортопедических имплантатов из титана и из нержавеющей стали наносят дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C, причем используют магнетронный источник углеродной плазмы с мощностью 95-108 Вт, источник атомов серебра с мощностью 2-20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ, а процесс нанесения антиадгезивного антибактериального покрытия продолжают в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4 - 1⋅10-3 Торр камере, при этом наносят на металлическую поверхность ортопедических имплантатов двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм. При этом в качестве магнетронного источника атомов углерода при дуальном распылении с двух магнетронных источников используют графит марки МПГ-7, АРВ или ВЧ.

Способ осуществляют следующим образом. Поверхность металлических имплантатов из титана и из нержавеющей стали подвергают очистке методом ионного травления. При этом металлический имплантат размещают в герметичной камере, которую затем вакуумируют до остаточного давления 9⋅10-5 - 1⋅10-6 Торр, заполняют камеру аргоном и вакуумируют до остаточного давления 4⋅10-4 - 1⋅10-3 Торр. Ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут.

Затем на очищенную поверхность ортопедических имплантатов из титана и из нержавеющей стали наносят дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем используют магнетронный источник углеродной плазмы с мощностью 95-108 Вт, магнетронный источник атомов серебра с мощностью 2-20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ. Процесс нанесения антиадгезивного антибактериального покрытия продолжают в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4 - 1⋅10-3 Торр камере. При этом наносят на металлическую поверхность ортопедических имплантатов двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм. При этом в качестве магнетронного источника атомов углерода при дуальном распылении с двух магнетронных источников используют графит марки МПГ-7, АРВ или ВЧ.

Среди существенных признаков, характеризующих предложенный способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, отличительными являются:

- выполнение очистки поверхности металлических имплантатов из титана и из нержавеющей стали методом ионного травления в герметичной камере, которую предварительно вакуумируют до остаточного давления 9⋅10-5 - 1⋅10-6 Торр, с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 4⋅10-4 - 1⋅10-3 Торр,

- выполнение ионного травления ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 минут,

- нанесение на поверхность ортопедических имплантатов из титана и из нержавеющей стали дуальным распылением с двух магнетронных источников антиадгезивного антибактериального покрытия в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C, причем использование магнетронного источника углеродной плазмы с мощностью 95-108 Вт, источника атомов серебра с мощностью 2-20 Вт и ионного источника стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ,

- продолжение процесса нанесения антиадгезивного антибактериального покрытия в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4 - 1⋅10-3 Торр камере,

- нанесение на металлическую поверхность ортопедических имплантатов двухкомпонентного антиадгезивного антибактериального биосовместимого нанопокрытия толщиной от 9 до 1180 нм, содержащего наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм,

- использование в качестве магнетронного источника атомов углерода при дуальном распылении с двух магнетронных источников графита марки МПГ-7, АРВ или ВЧ.

Реализация предложенного способа нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали иллюстрируется следующими практическими примерами.

Пример 1. На три плоских образца, выполненных из используемого для изготовления ортопедических имплантатов титана марки ВТ-6, нанесли предложенным способом антиадгезивное антибактериальное покрытие.

Поверхность трех плоских образцов из титана марки ВТ-6 очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 4⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 1,75 кэВ в течение 4 минут.

Затем на очищенную поверхность трех плоских образцов из титана марки ВТ-6 нанесли дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали магнетронный источник углеродной плазмы из графита марки МПГ-7 с мощностью 108 Вт, магнетронный источник атомов серебра с мощностью 18 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона 0,1 кэВ.

Процесс нанесения антиадгезивного антибактериального покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4 Торр камере. При этом нанесли на металлическую поверхность трех плоских образцов из титана марки ВТ-6 двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 870 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 1,2 нм.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ-6 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова» нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов дискодиффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 ч.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ-6 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана марки ВТ-6.

Пример 2. На три плоских образца, выполненных из используемого для изготовления ортопедических имплантатов титана марки ВТ-16, нанесли предложенным способом антиадгезивное антибактериальное покрытие.

Поверхность трех плоских образцов из титана марки ВТ-16 очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 9⋅10-5 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 1⋅10-3 Торр. Ионное травление выполнили ионами аргона с энергией 0,7 кэВ в течение 8 минут.

Затем на очищенную поверхность трех плоских образцов из титана марки ВТ-16 нанесли дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали магнетронный источник углеродной плазмы из графита марки ВЧ с мощностью 95 Вт, магнетронный источник атомов серебра с мощностью 20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона 1,0 кэВ.

Процесс нанесения антиадгезивного антибактериального покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 1⋅10-3 Торр камере. При этом нанесли на металлическую поверхность трех плоских образцов из титана марки ВТ-16 двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 460 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 7,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4 нм.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ-16 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова» нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRS A, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов дискодиффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 ч.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ-16 образования бактериальной биопленки штаммов Staphylococcus aureus MRS A, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана марки ВТ-16.

Пример 3. На три плоских образца, выполненных из используемого для изготовления ортопедических имплантатов титана марки ВТ1-0, нанесли предложенным способом антиадгезивное антибактериальное покрытие.

Поверхность трех плоских образцов из титана марки ВТ1-0 очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 6⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 3,0 кэВ в течение 4 минут.

Затем на очищенную поверхность трех плоских образцов из титана марки ВТ1-0 нанесли дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали магнетронный источник углеродной плазмы из графита марки АРВ с мощностью 102 Вт, магнетронный источник атомов серебра с мощностью 2 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона 1,5 кэВ.

Процесс нанесения антиадгезивного антибактериального покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 5⋅10-3 Торр камере. При этом нанесли на металлическую поверхность трех плоских образцов из титана марки ВТ1-0 двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 1,0 нм.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ1-0 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова» нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов дискодиффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 ч.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ1-0 образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана марки ВТ1-0.

Пример 4. На три плоских образца, выполненных из используемого для изготовления ортопедических имплантатов титана марки ВТ1-00, нанесли предложенным способом антиадгезивное антибактериальное покрытие.

Поверхность трех плоских образцов из титана марки ВТ1-00 очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 9⋅10-5 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 9⋅10-4 Торр. Ионное травление выполнили ионами аргона с энергией 2,25 кэВ в течение 5 минут.

Затем на очищенную поверхность трех плоских образцов из титана марки ВТ1-00 нанесли дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали магнетронный источник углеродной плазмы из графита марки МПГ-7 с мощностью 98 Вт, магнетронный источник атомов серебра с мощностью 10 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,9 кэВ.

Процесс нанесения антиадгезивного антибактериального покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 9⋅10-4 Торр камере. При этом нанесли на металлическую поверхность трех плоских образцов из титана марки ВТ1-00 двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 145 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 6,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,8 нм.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из титана марки ВТ1-00 в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова» нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRS A, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов дискодиффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 ч.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из титана марки ВТ1-00 образования бактериальной биопленки штаммов Staphylococcus aureus MRS A, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из титана марки ВТ1-00.

Пример 5. На три плоских образца, выполненных из используемой для изготовления ортопедических имплантатов нержавеющей стали медицинского назначения, нанесли предложенным способом антиадгезивное антибактериальное покрытие.

Поверхность трех плоских образцов из нержавеющей стали медицинского назначения очистили методом ионного травления в герметичной камере, которую сначала вакуумировали до остаточного давления 1⋅10-6 Торр, заполнили камеру аргоном и вакуумировали до остаточного давления 8⋅10-3 Торр. Ионное травление выполнили ионами аргона с энергией 1,25 кэВ в течение 7 минут.

Затем на очищенную поверхность трех плоских образцов из нержавеющей стали медицинского назначения нанесли дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C. Причем использовали магнетронный источник углеродной плазмы из графита марки ВЧ с мощностью 103 Вт, магнетронный источник атомов серебра с мощностью 14 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона 1,2 кэВ.

Процесс нанесения антиадгезивного антибактериального покрытия продолжили в заполненной аргоном и вакуумированной до остаточного давления 8⋅10-3 Торр камере. При этом нанесли на металлическую поверхность трех плоских образцов из нержавеющей стали медицинского назначения двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной 9 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,6 нм.

Затем на поверхность антиадгезивного антибактериального покрытия каждого плоского образца из нержавеющей стали медицинского назначения в лаборатории ФГБУ «ЦИТО им. Н.Н. Приорова» нанесли по 1 мл физиологического раствора с тест-культурами микроорганизмов, выделенных от пациентов с инфекционными осложнениями после эндопротезирования крупных суставов и относящихся к виду Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa, в концентрациях, содержащих 107 клеток каждой тест-культуры, соответствующей стандарту мутности 0,5 Мак Фарланд.

Нанесенные растворы каждой тест-культуры равномерно распределяли на поверхности одного образца, поверхность подсушили идентично способу определения антибиотикорезистентности микроорганизмов дискодиффузионным методом. Образцы инкубировали в термостате при температуре 36°С в течение 24 ч.

В результате электронного микроскопического исследования поверхности покрытия каждого образца после инкубирования были установлены высокие антиадгезивные свойства предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов. При этом установлено отсутствие на поверхности каждого из трех плоских образцов из нержавеющей стали медицинского назначения образования бактериальной биопленки штаммов Staphylococcus aureus MRSA, E.Coli и Pseudomonas aeruginosa при отсутствии роста их колоний с одновременным их угнетением до единичных колоний или до их полного отсутствия, что свидетельствует о высокой эффективности предложенного антиадгезивного антибактериального покрытия для ортопедических имплантатов из нержавеющей стали медицинского назначения.

Похожие патенты RU2632706C1

название год авторы номер документа
Антиадгезивное антибактериальное покрытие для ортопедических имплантатов из титана и нержавеющей стали 2016
  • Цискарашвили Арчил Важаевич
  • Калиниченко Валерий Николаевич
  • Стрелецкий Олег Андреевич
RU2632702C1
Ортопедический имплантат из титана и нержавеющей стали с антиадгезивным антибактериальным покрытием 2016
  • Цискарашвили Арчил Важаевич
  • Калиниченко Валерий Николаевич
  • Стрелецкий Олег Андреевич
RU2632761C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения 2023
  • Завидовский Илья Алексеевич
  • Стрелецкий Олег Андреевич
  • Цискарашвили Арчил Важаевич
RU2809240C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения 2017
  • Стрелецкий Олег Андреевич
  • Иваненко Илья Петрович
RU2651837C1
Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы 2017
  • Стрелецкий Олег Андреевич
  • Иваненко Илья Петрович
RU2651836C1
Технологическая установка для нанесения наноуглеродных покрытий на поверхности медицинских изделий или их частей, обладающих антибактериальными и биосовместимыми свойствами 2019
  • Стрелецкий Олег Андреевич
RU2724277C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА УСТРОЙСТВА И ИНСТРУМЕНТЫ ДЛЯ ОСТЕОСИНТЕЗА, ОРТОПЕДИЧЕСКИЕ ИМПЛАНТАТЫ ИЗ МЕТАЛЛА 2018
  • Николаев Николай Станиславович
  • Кочаков Валерий Данилович
  • Новиков Николай Дмитриевич
RU2697855C1
Способ получения антибактериального кальцийфосфатного покрытия на ортопедическом имплантате, имеющем форму тела вращения и оснастка для его осуществления (варианты) 2020
  • Митриченко Дмитрий Владимирович
  • Просолов Александр Борисович
  • Комков Андрей Рашитович
  • Хлусов Игорь Альбертович
  • Анисеня Илья Иванович
  • Ластовка Владимир Викторович
  • Просолов Константин Александрович
  • Белявская Ольга Андреевна
  • Шаркеев Юрий Петрович
RU2745726C1
Способ создания микро- и нанорельефной биоинертной поверхности на имплантатах из титана и титановых сплавов 2018
  • Геворгян Владимир Арамович
  • Долгалев Александр Александрович
  • Бухалов Борис Владимирович
RU2679604C1
Способ функционализации поверхности медицинского изделия путем наклонного осаждения структурированного антибактериального покрытия на основе фосфатов кальция 2022
  • Просолов Константин Александрович
  • Ластовка Владимир Викторович
  • Шаркеев Юрий Петрович
RU2806506C1

Реферат патента 2017 года Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали

Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающему нанесение покрытия на предварительно обработанную поверхность металлического имплантата, при этом поверхность металлических имплантатов из титана и нержавеющей стали подвергают очистке методом ионного травления в герметичной камере, которую предварительно вакуумируют до остаточного давления 9⋅10-5-1⋅10-6 Торр, с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 4⋅10-4-1⋅10-3 Торр, а ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 мин, затем на поверхность ортопедических имплантатов из титана и из нержавеющей стали наносят дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C, причем используют магнетронный источник углеродной плазмы с мощностью 95-108 Вт, источник атомов серебра с мощностью 2-20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ, а процесс нанесения антиадгезивного антибактериального покрытия продолжают в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4-1⋅10-3 Торр камере, при этом наносят на металлическую поверхность ортопедических имплантатов двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм. При этом в качестве магнетронного источника атомов углерода при дуальном распылении с двух магнетронных источников используют графит марки МПГ-7, АРВ или ВЧ. Способ обеспечивает высокие антиадгезивные свойства и высокую биосовместимость в различных физиологических средах организма пациента. 1 з.п. ф-лы, 5 пр.

Формула изобретения RU 2 632 706 C1

1. Способ нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающий нанесение покрытия на предварительно обработанную поверхность металлического имплантата, отличающийся тем, что поверхность металлических имплантатов из титана и из нержавеющей стали подвергают очистке методом ионного травления в герметичной камере, которую предварительно вакуумируют до остаточного давления 9·10-5-1·10-6 Торр, с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 4·10-4-1·10-3 Торр, а ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 мин, затем на поверхность ортопедических имплантатов из титана и из нержавеющей стали наносят дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C, причем используют магнетронный источник углеродной плазмы с мощностью 95-108 Вт, магнетронный источник атомов серебра с мощностью 2-20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ, а процесс нанесения антиадгезивного антибактериального покрытия продолжают в заполненной аргоном и вакуумированной до остаточного давления 4·10-4-1·10-3 Торр камере, при этом наносят на металлическую поверхность ортопедических имплантатов двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм.

2. Способ по п. 1, отличающийся тем, что в качестве магнетронного источника атомов углерода при дуальном распылении с двух магнетронных источников используют графит марки МПГ-7, АРВ или ВЧ.

Документы, цитированные в отчете о поиске Патент 2017 года RU2632706C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО ИМПЛАНТАТА С ИОННО-ЛУЧЕВОЙ МОДИФИКАЦИЕЙ 2013
  • Муктаров Орынгали Джулдгалиевич
  • Перинская Ирина Владимировна
  • Лясников Владимир Николаевич
  • Перинский Владимир Владимирович
RU2530568C1
ВИНТОВОЙ ИМПЛАНТАТ ДЛЯ ОСТЕОСИНТЕЗА ШЕЙКИ БЕДРЕННОЙ КОСТИ 2015
  • Козлов Виктор Алексеевич
  • Васильев Владимир Юрьевич
  • Зверев Федор Николаевич
  • Волокитина Елена Александровна
RU2582980C1
ОРТОПЕДИЧЕСКИЙ ИМПЛАНТАТ И КРЕПЕЖНОЕ ПРИСПОСОБЛЕНИЕ 2010
  • Ватанабэ Косукэ
  • Сэндерз Рой
RU2580978C2

RU 2 632 706 C1

Авторы

Стрелецкий Олег Андреевич

Калиниченко Валерий Николаевич

Цискарашвили Арчил Важаевич

Даты

2017-10-09Публикация

2016-11-30Подача