Газогенератор твердого топлива Российский патент 2017 года по МПК F23R5/00 F02K9/32 

Описание патента на изобретение RU2633976C1

Изобретение относится преимущественно к авиационной, ракетной, нефтегазовой промышленности и может использоваться для создания потока с регулируемым массовым расходом газообразного низкотемпературного (менее 1000 K) рабочего тела, являющегося смесью продуктов сгорания твердого топлива и продуктов сублимации наполнителя. Известно также использование газогенератора твердого топлива при подводных аварийно-спасательных работах, когда возникает необходимость в оперативном получении большого количества сжатого газа, например для вытеснения воды, из глубоководного понтона при осуществлении судоподъема.

Важной проблемой при создании газогенераторов твердого топлива является реализация возможности их неоднократного включения и регулирования массового расхода рабочего тела в процессе каждого включения. В ряде случаев рабочее тело является смесью продуктов сублимации наполнителя и продуктов сгорания твердого топлива. В качестве материалов, из которых изготовлены заряды наполнителя, могут выступать инертные и горючие твердые соединения, в том числе полиэтилен, полиизобутилен, полиметилметакрилат, парафин и др. В этом случае, если процесс сублимации наполнителя основан на обтекании его зарядов непосредственно продуктами сгорания твердого топлива, возникают технические проблемы регулирования массового расхода рабочего тела.

Известны многочисленные аналоги газогенераторов на твердом топливе и близкие к ним по конструкции регулируемые ракетные двигатели твердого топлива.

В патенте США № 4530396 предложено устройство, состоящее из двух зарядов, где регулирование расхода осуществляется по заданной циклограмме следующим образом. Верхний заряд, заключенный в герметичную оболочку, изготовляется из зерненого пороха, а пространство между зернами пороха заполнено маслом. Второй заряд расположен ниже и изготовлен из баллиститного пороха. Воспламенение осуществляется в центральном канале зарядов электровоспламенителем, либо в комбинации с быстрогорящим линейным воспламенителем различной длины. Первый заряд создает первоначальный импульс давления длительностью несколько десятков миллисекунд при большом расходе продуктов газификации. За ним следует протяженный по времени участок низкого расхода продуктов газификации. Недостатком такого газогенератора являются сложность изготовления герметичных зарядов из зерненного пороха, а также отсутствие возможности изменения в изготовленном устройстве продолжительности первоначального импульса и массового расхода на номинальном режиме.

Известен управляемый ракетный двигатель (патент РФ № 2171389), содержащий корпус, заряд, сопло и гидравлический узел, выполненный из обращенного в полость корпуса стакана, установленного в стакане с возможностью продольного перемещения ступенчатого поршня, жидкости-хладагента, находящейся в подпоршневой полости стакана. Принцип действия заключается во впрыске в камеру сгорания воды для снижения температуры продуктов сгорания. Если интенсивность впрыска сопоставима с газоприходом от заряда, то наблюдается гашение заряда за счет интенсивного отбора тепла на нагрев и испарение впрыскиваемой воды. Если же интенсивность впрыска такова, что в любой момент работы двигателя в камере сгорания находится 10-15% воды, то температура в камере регламентировано снижается, не вызывая прекращения горения заряда. Вслед за снижением температуры понижается давление продуктов сгорания, уменьшается конвективный теплоподвод к поверхности горения. Недостатком является низкая эффективность предложенной схемы, т.к. впрыск воды существенным образом меняет параметры в двигателе и требуется достаточный запас воды, что представляет определенные технические и конструкторские трудности.

Известен газогенератор с регулятором расхода (патент РФ № 2484281), который содержит управляющее устройство с приводом, регулируемую сопловую втулку и сопловую втулку постоянного проходного сечения. Узел регулирования проходного сечения выполнен в виде поворотной профилированной заслонки переменного сечения. Изобретение позволяет повысить надежность регулятора твердого топлива. Недостатком регулятора расхода является наличие вращающихся и перемещаемых деталей в области наиболее интенсивного теплового воздействия, что может привести к заклиниванию устройства в процессе регулирования массового расхода твердого топлива или при перегрузках, воздействующих на газогенератор.

Наиболее близким прототипом является заряд твердого топлива для ракетного двигателя с двумя или более ступенями тяги (патент РФ № 2131053), состоящий, по меньшей мере, из двух газогенерирующих частей (стартовой и одной или нескольких маршевых) и разделительных перегородок между ними, которые выполнены в виде шашек безгазового горения. Данное изобретение предназначено для обеспечения ступенчатого регулирования тяги ракетного двигателя с отсечкой тяги после сгорания стартового заряда. Недостатком подобного заряда твердого топлива является невозможность изменения задержки времени между включениями (временного интервала между окончанием работы стартового заряда и началом работы маршевого заряда). Помимо этого, в описываемом изобретении отсутствует возможность регулирования массового расхода продуктов газификации, что ограничивает возможности его использования.

В основу предлагаемого изобретения положены решения следующих технических проблем:

- расширение диапазонов регулирования массового расхода газообразного низкотемпературного рабочего тела;

- уменьшение продольных габаритных размеров газогенератора;

- обеспечение сублимации наполнителя на всех режимах работы газогенератора;

- повышение надежности работы газогенератора при его неоднократном включении;

- устранение воздействия регулирования массового расхода на горение твердого топлива в центральном полом цилиндре.

Технический результат заключается в обеспечении многократного включения газогенератора и изменения задержки времени между включениями, быстрого и эффективного регулирования массового расхода газообразного низкотемпературного рабочего тела, являющегося смесью продуктов сгорания твердого топлива и продуктов сублимации наполнителя, а также обеспечение высокой надежности при форсировании работы газогенератора.

Технические проблемы решаются тем, что газогенератор твердого топлива содержит центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца. В полом цилиндре размещены от сопла последовательно друг за другом, по меньшей мере, две локальные газогенерирующие части заряда твердого топлива с разделительной перегородкой между ними и система инициирования воспламенения частей заряда твердого топлива.

Новым в изобретении является то, что газогенератор дополнительно содержит цилиндрический корпус с размещенными в нем соосно центральному полому цилиндру периферийным и центральным зарядами наполнителя, скрепленными с цилиндрическим корпусом и центральным полым цилиндром соответственно, газодинамическую резонансную камеру и входную и выходную круговые решетки со стороны торцов корпуса. Цилиндрический корпус снабжен днищем со стороны входной решетки и коническим переходником с патрубком со стороны выходной решетки. Центральный заряд наполнителя имеет осевое отверстие. Резонансная камера выполнена в виде стакана с расположенным в нем поршнем, установлена в центре днища корпуса и обращена по оси открытой стороной в сторону сопла полого цилиндра. Периферийный и центральный заряды наполнителя установлены и зафиксированы в корпусе по торцам от осевых перемещений между входной и выходной решетками с образованием кольцевого канала между зарядами наполнителя коаксиально полому цилиндру. Полый цилиндр размещен в осевом отверстии центрального заряда наполнителя и обращен соплом по оси в сторону резонансной камеры с образованием промежуточной полости между ними, сообщающейся через кольцевой канал между зарядами наполнителя и выходную решетку с патрубком.

При таком устройстве газогенератора:

- наличие резонансной камеры, выполненной в виде стакана с расположенным в ней поршнем, которая установлена в центре днища корпуса и обращена по оси открытой стороной в сторону сопла полого цилиндра, обеспечивает расширение диапазонов регулирования массового расхода газообразного низкотемпературного рабочего тела газогенератора;

- наличие осевого отверстия в центральном заряде наполнителя и размещение полого цилиндра в осевом отверстии центрального заряда с направлением его соплом по оси в сторону резонансной камеры, а также размещение зарядов в цилиндрическом корпусе, который снабжен днищем с одной стороны и коническим переходником с патрубком с другой стороны, обеспечивает уменьшение продольных габаритных размеров газогенератора;

- наличие кольцевого канала между периферийным и центральным зарядами наполнителя коаксиального полому цилиндру обеспечивает сублимацию наполнителя на всех режимах работы газогенератора;

- наличие сопла полого цилиндра и промежуточной полости между соплом полого цилиндра и резонансной камерой устраняет воздействие регулирования массового расхода на горение твердого топлива в полом цилиндре;

- наличие цилиндрического корпуса, центрального полого цилиндра, периферийного и центрального зарядов наполнителя, прочно скрепленных с цилиндрическим корпусом и центральным полым цилиндром соответственно, расположенных между двумя круговыми решетками, позволяет повысить надежность работы газогенератора при его неоднократном включении.

Развитие и уточнение совокупности существенных признаков изобретения для частных случаев его выполнения дано далее:

- наличие полости между поршнем и дном стакана резонансной камеры, которая снабжена магистралью подвода газа через регулирующий клапан, обеспечивает возможность использования резонансной камеры для глубокого регулирования массового расхода рабочего тела газогенератора;

- размещение перегородок между смежными газогенерирующими частями твердого топлива из материала, не способного к самостоятельному горению, обеспечивает возможность поочередного заданного включения газогенерирующих частей заряда твердого топлива;

- наличие автономных электровоспламенителей для каждой газогенерирующей части заряда твердого топлива обеспечивает возможность управляемого включения газогенератора по заданным командам;

- увеличенная площадь проходного сечения отверстий во входной круговой решетке относительно площади проходного сечения отверстий в выходной круговой решетке обеспечивает повышение интенсификации процесса сублимации периферийного и центрального зарядов наполнителя.

Таким образом, решены поставленные в изобретении технические проблемы:

- расширен диапазон регулирования массового расхода газообразного низкотемпературного рабочего тела;

- уменьшен продольный габаритный размер газогенератора;

- обеспечена сублимация наполнителя на всех режимах работы газогенератора;

- повышена надежность работы газогенератора при его неоднократном включении;

- устранено воздействие регулирования массового расхода на горение твердого топлива в центральном полом цилиндре.

Настоящее изобретение поясняется последующим подробным описанием газогенератора твердого топлива и его работы со ссылкой на иллюстрации, представленные на фиг. 1-3, где:

на фиг. 1 изображен продольный разрез газогенератора твердого топлива;

на фиг. 2 - элемент А на фиг. 1 (поршень резонансной камеры расположен со стороны сопла центрального цилиндра);

на фиг. 3 - элемент А на фиг. 1 (поршень расположен у дна стакана резонансной камеры).

Газогенератор твердого топлива (см. фиг. 1-3) содержит центральный полый цилиндр 1, закрытый с одного торца и открытый в виде суживающегося сопла 2 с другого торца, размещенные в цилиндре 1 от сопла 2 последовательно друг за другом, по меньшей мере, две локальные газогенерирующие части 3, 4 заряда твердого топлива с разделительной перегородкой 5 между ними из материала, не способного к самостоятельному горению, и систему инициирования воспламенения частей 3, 4 заряда твердого топлива на основе автономных электровоспламенителей 6, 7. Газогенератор дополнительно содержит цилиндрический корпус 8 с размещенными в нем соосно центральному полому цилиндру 1 периферийный и центральный заряды 9, 10 наполнителя. Заряды 9, 10 прочно скреплены с цилиндрическим корпусом 8, центральным полым цилиндром 1 и входной и выходной круговыми решетками 11 и 12 со стороны торцов корпуса 8. Цилиндрический корпус 8 снабжен днищем 13 со стороны входной решетки 11 и коническим переходником 14 с патрубком 15 со стороны выходной решетки 12. В центре днища 13 корпуса 8 размещена резонансная камера 16, которая выполнена в виде стакана с расположенным в нем поршнем 17 (см. фиг. 2, 3) и обращена по оси открытой стороной к соплу 2 полого цилиндра 1. Периферийный и центральный заряды 9, 10 наполнителя установлены и зафиксированы в корпусе 8 от осевых перемещений между входной 11 и выходной 12 круговыми решетками с образованием сквозного кольцевого канала 18. Полый цилиндр 1 размещен в осевом отверстии центрального заряда 10 наполнителя и обращен соплом по оси в сторону резонансной камеры 16 с образованием промежуточной полости 19 между ними, сообщающейся через сквозной кольцевой канал 18 между зарядами 9, 10 наполнителя и выходную решетку 12 с патрубком 15. Полый цилиндр 1 скреплен с цилиндрическим корпусом 8 через входную и выходную решетки 11, 12. В качестве материалов, из которых изготовлены периферийный и центральный заряды 9, 10 наполнителя, могут быть использованы инертные и горючие твердые соединения, в том числе полиэтилен, полиизобутилен, полиметилметакрилат, парафин и др. Поршень 17 установлен в резонансной камере 16 с возможностью перемещения под воздействием перепада давления между давлением газа в промежуточной полости 19 и давлением управляющего газа в полости резонансной камеры. Подвод управляющего газа в полость резонансной камеры 16 осуществляется по пневматическому каналу 20 через регулирующий клапан управления 21 и трубку 22 подвода управляющего газа. Для обеспечения герметичности резонансной камеры 16 в поршне 17 установлены уплотнения 23.

Газогенератор твердого топлива работает следующим образом. В начальный момент времени с помощью воспламенителя 6 осуществляется зажигание части 3 заряда твердого топлива, высокотемпературные продукты сгорания которого поступают через суживающееся сопло 2 и промежуточную полость 19 в сквозной кольцевой канал 18 и далее в конический переходник 14 с патрубком 15. При этом поршень 17 расположен в резонансной камере 16 со стороны сопла 2 полого цилиндра 1 (см. фиг. 2) и удерживается там давлением управляющего газа. В этом случае полость резонансной камеры 16 закрыта и пульсаций давления в промежуточной полости 19 и сквозном кольцевом канале 18 не возникает. Продукты сгорания части 3 заряда твердого топлива через сопло 2 и промежуточную полость 19 проходят в кольцевом канале 18 между периферийным 9 и центральным 10 зарядами наполнителя. Посредством тепломассообмена между продуктами сгорания заряда твердого топлива 3 и зарядами 9, 10 происходит сублимация наполнителя. Для компенсации неравномерной скорости сублимации кольцевой канал 18 между периферийным 9 и центральным 10 зарядами наполнителя может быть выполнен профилированным (с переменной по длине формой и площадью поперечного сечения). Газообразные продукты сублимации зарядов 9, 10 наполнителя перемешиваются с продуктами сгорания заряда 3 твердого топлива, и после выходной решетки в патрубке 15 образуется их смесь с низкой температурой. В этом случае реализуется базовый режим работы газогенератора.

В случае необходимости увеличения массового расхода через газогенератор клапан 21 закрывается, и управляющий газ, находящийся за ним, автоматически сбрасывается в атмосферу. При этом давление в объеме между резонансной камерой 16 и поршнем 17 снижается и поршень 17 смещается в сторону дна стакана резонансной камеры (см. фиг. 3). В результате в резонансной камере 16 образуется полузамкнутая полость. Продукты сгорания части 3 заряда твердого топлива, выходящие из сопла 2 со сверхзвуковой скоростью, попадают в резонансную камеру 16, где возбуждаются интенсивные пульсации давления, вызываемые натеканием высокоскоростного газового потока в полузамкнутую полость. Реализуется эффект Гартмана, приводящий к возникновению интенсивных пульсаций давления в промежуточной полости 19 и сквозном кольцевом канале 18. Интенсивные пульсации давления, в свою очередь, приводят к значительному увеличению коэффициента теплоотдачи на поверхности периферийного и центрального зарядов 9, 10 наполнителя, что приводит к интенсификации процесса их сублимации и увеличению суммарного массового расхода газа в патрубке 15.

Для повышения эффективности интенсификации процесса сублимации, периферийного и центрального зарядов 9, 10 наполнителя требуется, чтобы проходное сечение отверстий во входной решетке 11 было больше проходного сечения отверстий в выходной решетке 12.

Учитывая то, что сопло 2 звуковое, в центральный цилиндр 1 пульсации давления не проникают, что обеспечивает устойчивость процесса горения зарядов 3, 4 и последующих зарядов твердого топлива. Демпфирование газогенератора с помощью входной 11 и выходной 12 решеток обеспечивает минимизацию влияния механических вибраций на процесс горения зарядов твердого топлива.

Если нет необходимости в высоком массовом расходе газа, открывается регулирующий клапан управления 21, давление в объеме между резонансной камерой 16 и поршнем 17 увеличивается, поршень смещается в сторону сопла 2 (см. фиг. 2), пульсации давления в промежуточной полости 19 и сквозном кольцевом канале 18 прекращаются, газогенератор возвращается на базовый режим работы.

Промежуточный останов в работе газогенератора происходит дискретно после выработки заряда твердого топлива 3 и последующих зарядов. Отсутствие воспламенения заряда 4 и последующих зарядов обеспечивается наличием разделительных перегородок 5 из материала, не способного к самостоятельному горению. В случае необходимости включения заряда 4 газогенератора срабатывает воспламенитель 7 и инициируется зажигание заряда 4 твердого топлива. При этом разделительная перегородка 5 частично сгорает и разрушается при срабатывании воспламенителя 7 перед началом горения 4 заряда твердого топлива или последующих. Принцип работы газогенератора и регулирования массового расхода рабочего тела в этом случае сохраняется.

Проведенное расчетно-аналитическое исследование показало возможность реализации рассматриваемой схемы газогенератора твердого топлива и эффективность регулирования массового расхода рабочего тела в широком диапазоне режимов работы.

Похожие патенты RU2633976C1

название год авторы номер документа
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя 2018
  • Александров Вадим Юрьевич
  • Арефьев Константин Юрьевич
  • Ильченко Михаил Александрович
  • Ананян Марлен Валерьевич
  • Федотова Ксения Викторовна
RU2688054C1
ИМПУЛЬСНЫЙ ГАЗОГЕНЕРАТОР 2016
  • Тартынов Игорь Викторович
  • Вагонов Сергей Николаевич
  • Варёных Николай Михайлович
  • Антонов Олег Юрьевич
  • Мухамедов Виктор Сатарович
RU2622137C1
Газогенератор для устройства пожаротушения, формирующего самовспенивающуюся струю 2022
  • Пономарев Сергей Алексеевич
  • Соломонов Юрий Семенович
  • Милехин Юрий Михайлович
  • Дорофеев Александр Алексеевич
  • Румянцев Борис Васильевич
  • Деревянкин Владимир Александрович
  • Шабунин Александр Иванович
  • Цветков Антон Олегович
  • Черепов Илья Владимирович
RU2789574C1
ГАЗОГЕНЕРАТОР 2011
  • Молчанов Олег Александрович
  • Салова Тамара Юрьевна
RU2497582C2
Пороховой аккумулятор давления для минометной схемы разделения ступеней ракеты в полете 2018
  • Кобцев Виталий Георгиевич
  • Сухадольский Александр Петрович
  • Мухамедов Виктор Сатарович
  • Бобович Александр Борисович
  • Кобцев Аркадий Геннадиевич
RU2678726C1
Ракетно-прямоточный двигатель с регулируемым расходом твёрдого топлива 2015
  • Ульянова Марина Викторовна
  • Давыденко Николай Андреевич
RU2615889C1
МОДУЛЬ ПОЖАРОТУШЕНИЯ 2022
  • Доровских Роман Сергеевич
  • Чудаев Александр Владимирович
RU2815249C1
ГАЗОГЕНЕРАТОР ДЛЯ СИСТЕМ ВЫТЕСНЕНИЯ ЖИДКИХ ИЛИ ПОРОШКОВЫХ ВЕЩЕСТВ ИЗ РЕЗЕРВУАРА 2022
  • Доровских Роман Сергеевич
  • Чудаев Александр Владимирович
RU2800788C1
ГАЗОГЕНЕРАТОР 2005
  • Коломин Евгений Иванович
  • Малинин Владимир Игнатьевич
  • Серебренников Сергей Юрьевич
  • Коломин Антон Евгеньевич
RU2292234C2
Устройство для распыления порошков 2017
  • Архипов Владимир Афанасьевич
  • Коноваленко Алексей Иванович
  • Романдин Владимир Иванович
  • Перфильева Ксения Григорьевна
RU2651433C1

Иллюстрации к изобретению RU 2 633 976 C1

Реферат патента 2017 года Газогенератор твердого топлива

Изобретение относится к отраслям промышленности, где требуется создание потока с регулируемым массовым расходом газообразного низкотемпературного рабочего тела. Газогенератор содержит центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца, размещенные в цилиндре локальные газогенерирующие части заряда твердого топлива с разделительными перегородками между ними и систему воспламенения частей заряда. Газогенератор дополнительно содержит цилиндрический корпус с периферийным и центральным зарядами наполнителя, резонансную камеру и две круговые решетки. Цилиндрический корпус снабжен днищем с одной стороны и коническим переходником с патрубком с другой стороны. Резонансная камера выполнена в виде стакана с расположенным в нем поршнем и установлена в центре днища корпуса. Заряды наполнителя установлены в корпусе между входной и выходной круговыми решетками с образованием между ними кольцевого канала, коаксиального полому цилиндру. Полый цилиндр размещен в осевом отверстии центрального заряда наполнителя и обращен соплом по оси в сторону резонансной камеры с образованием промежуточной полости между ними, сообщающейся через кольцевой канал между зарядами наполнителя с патрубком. Изобретение позволяет обеспечить возможность многократного включения газогенератора и регулирования массового расхода газообразного низкотемпературного рабочего тела, а также повысить надежность газогенератора. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 633 976 C1

1. Газогенератор твердого топлива, содержащий центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца, размещенные в цилиндре от сопла последовательно друг за другом, по меньшей мере, две локальные газогенерирующие части заряда твердого топлива с разделительной перегородкой между ними и систему инициирования воспламенения частей заряда твердого топлива, отличающийся тем, что дополнительно содержит цилиндрический корпус с размещенными в нем соосно центральному полому цилиндру периферийным и центральным зарядами наполнителя, скрепленными с цилиндрическим корпусом и центральным полым цилиндром соответственно, газодинамическую резонансную камеру и входную и выходную круговые решетки со стороны торцов корпуса, где цилиндрический корпус снабжен днищем со стороны входной решетки и коническим переходником с патрубком со стороны выходной решетки, центральный заряд наполнителя имеет осевое отверстие, резонансная камера выполнена в виде стакана с расположенным в нем поршнем, установлена в центре днища корпуса и обращена по оси открытой стороной в сторону сопла полого цилиндра, периферийный и центральный заряды наполнителя установлены и зафиксированы в корпусе по торцам от осевых перемещений между входной и выходной решетками с образованием кольцевого канала между зарядами коаксиального полому цилиндру, причем полый цилиндр размещен в осевом отверстии центрального заряда наполнителя и обращен соплом по оси в сторону резонансной камеры с образованием промежуточной полости между ними, сообщающейся через кольцевой канал между зарядами наполнителя и выходную решетку с патрубком.

2. Газогенератор по п. 1, отличающийся тем, что полость между поршнем и дном стакана резонансной камеры снабжена магистралью подвода газа через регулирующий клапан.

3. Газогенератор по п. 1, отличающийся тем, что между смежными газогенерирующими частями твердого топлива размещены перегородки из материала, не способного к самостоятельному горению.

4. Газогенератор по п. 1, отличающийся тем, что каждый из зарядов твердого топлива снабжен автономным электровоспламенителем.

5. Газогенератор по п. 1, отличающийся тем, что площадь проходного сечения отверстий во входной решетке больше площади проходного сечения отверстий в выходной решетке.

Документы, цитированные в отчете о поиске Патент 2017 года RU2633976C1

ПИРОТЕХНИЧЕСКОЕ АЗОТГЕНЕРИРУЮЩЕЕ УСТРОЙСТВО 2005
  • Кобцев Виталий Георгиевич
  • Шишков Альберт Алексеевич
  • Бобович Александр Борисович
  • Багдасарьян Михаил Александрович
  • Калашников Сергей Алексеевич
  • Конопатов Сергей Викторович
  • Мухамедов Виктор Сатарович
  • Поляков Владимир Анатольевич
  • Коротков Роберт Петрович
  • Воробьев Сергей Николаевич
RU2347979C2
Хомутовая привязь 1961
  • Кравчук А.Т.
SU143274A1
ЗАРЯД ТВЕРДОГО ТОПЛИВА ДЛЯ РАКЕТНОГО ДВИГАТЕЛЯ С ДВУМЯ ИЛИ БОЛЕЕ СТУПЕНЯМИ ТЯГИ 1996
  • Дубинин В.А.
  • Луговой А.Н.
  • Аксененко Д.Д.
  • Марьяш В.И.
  • Романов Е.П.
  • Жарков А.С.
RU2131053C1
УПРАВЛЯЕМЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 1999
  • Соколовский М.И.
  • Лянгузов С.В.
  • Огнев С.В.
RU2171389C2
US 4530396 A, 23.07.2001.

RU 2 633 976 C1

Авторы

Александров Вадим Юрьевич

Арефьев Константин Юрьевич

Ильченко Михаил Александрович

Яновский Леонид Самойлович

Даты

2017-10-20Публикация

2016-06-09Подача