Изобретение относится к области электронных приборов СВЧ, в частности к вакуумным усилителям с распределенным взаимодействием.
Традиционно проблема расширения полосы усиливаемых частот совместно с продвижением в миллиметровый диапазон решается при помощи нерезонансных вакуумных усилителей. Одной из возможных реализаций такого усилителя является распределенный усилитель, принципы работы которого подробно описаны в [Ginston EX., Hewlett W.R., Jasberg J.H. Distributed amplification // Proc. IRE. 1948. V. 36. P. 956]. С появлением вакуумных микроэлектронных триодов с автоэмиссионными катодами было показано в [Кабанов И.Н. Расчет микровакуумных триодов на матричных автоэмиссионных катодах // 8-я международная конференция КрыМиКо, сентябрь 1998, с. 205-207], [Патент США US4987377 А, МПК: H01J 3/02; H03F 1/18; H03F 3/60; (IPC1-7): H03F 3/60, опубл. 22.01.1991], что распределенные усилители могут быть использованы вплоть до частоты 1 ТГц, а ширина полосы усиливаемых частот ограничивается конструкционными возможностями. Однако бурное развитие распределенных усилителей сдерживают несколько факторов [Соколов Д.В., Трубецков Д.И. Микроэлектронный автоэмиссионный усилитель со скрещенными полями // Журнал технической физики, 2000, том 70, вып. 1, с. 136-138]: применение тонких металлических пленок существенно увеличивает ВЧ-потери, а относительно широкая и протяженная матрица микротриодов с небольшим расстоянием катод-сетка увеличивает входную емкость усилителя и значительно занижает верхнюю границу полосы рабочих частот.
Известны технические решения, позволяющие уменьшить влияние перечисленных негативных факторов.
Известен распределенный усилитель СВЧ-диапазона, в котором предлагается выполнять анодно-сеточную и катодно-сеточную линию одинаковыми в виде периодической штыревой замедляющей системы, штыри которой выполняют роль анодов микроэлектронных триодов [Патент RU №2098882, МПК: H01J 21/20, H03F 3/60; опубл. 10.12.1997]. Такой подход позволяет снизить ВЧ-потери и улучшить теплоотвод от микроострий.
Недостатком такого решения является сужение рабочей полосы из-за того, что замедляющая система по типу близка к замедляющим системам типа цепочки связанных резонаторов, которые, как известно [Силин Р.А., Сазонов В.П. Замедляющие волноводы / М.: «Советское радио», 1966, 632 с.], обладают выраженной дисперсией, что затрудняет получение широкой (от 1 октавы и более) полосы усиливаемых частот.
Известно техническое решение [McGruer N.E., Johnson А.С., McKnight S.W. Prospect for a 1 THz Vacuum Microelectronic Microstrip Amplifier // IEEE Trans, on Electron Devices, vol. 38, No. 3, March 1991], в котором предлагается вводить дополнительную металлическую плоскость между сеткой и анодом, находящуюся под потенциалом катода. Такая конструкция позволяет несколько повысить рабочую частоту усилителя в сравнении с [Кабанов И.Н. Расчет микровакуумных триодов на матричных автоэмиссионных катодах // 8-я международная конференция КрыМиКо, сентябрь 1998, с. 205-2072].
Недостатком такого решения является заметное увеличение угла пролета электронов, что является физическим ограничением дальнейшего повышения рабочей частоты усилителя.
Техническим результатом заявляемого технического решения является снижение входной емкости распределенного усилителя и, как следствие, увеличение верхней границы рабочего диапазона частот, а так же снижение массогабаритных показателей распределенного усилителя.
Это достигается тем, что каскадный распределенный усилитель СВЧ включает в себя каскадное соединение нескольких одинаковых по длине усилительных секций на основе микротриодов с автоэлектронными катодами, в котором выходная анодно-сеточная линия предыдущего каскада является входной катодно-сеточной линией последующего усилительного каскада. При этом расстояние катод-сетка не равно расстоянию сетка-анод, длина усилительных секций различна, а внутренние полости заполнены диэлектриком, за исключением пространства катод-анод микротриодов. Предлагаемое техническое решение также позволяет уменьшить продольные размеры усилителя, т.к. в одном корпусе объединены несколько каскадов усиления.
Ток автоэлектронной эмиссии [Фурсей Г.Н. Автоэлектронная эмиссия. / С-Пб., «Лань», 2012, 322 с.] описывается соотношением Фаулера-Нордгейма, благодаря чему микротриод на основе холодного автоэмиссионного микроострийного катода обладает достаточно большой крутизной. Однако ток, отбираемый с одного микроострия, весьма мал, так как увеличение его может привести к перегреву микроострия или взрывной эмиссии. Поэтому для получения приемлемого усиления в распределенных усилителях применяют матрицы микротриодов. Размеры матрицы напрямую определяют входную емкость усилителя.
Техническая сущность и принцип действия предложенного устройства поясняются чертежами.
На фиг. 1 схематично представлена конструкция заявляемого технического решения - каскадного распределенного усилителя. Входной СВЧ-сигнал поступает во входной волновод 1, который, для уменьшения возможных отражений, плавно сужается и образует катодно-сеточную линию первого входного усилительного каскада. Поперечная компонента электрического поля входного СВЧ-сигнала вызывает появление (увеличение - при наличии напряжения смещения на сетке) автоэмиссионного тока с микроострий 3. Этот ток, проходя через отверстия 2 в сетке, осаждается на анод 5, который является сеткой для второго каскада усиления, и вместе с сеткой первого (входного) каскада образует катодно-сеточную линию второго каскада усиления. Катодно-сеточные и анодно-сеточные линии представляют собой волноводы прямоугольного поперечного сечения (фиг. 1, сечение А-А и Б-Б). Расстояние от плоскости катода (следует понимать плоскость, на которой расположены микроострия) до плоскости сетки равно расстоянию от плоскости сетки до плоскости анода. Ток микроострий, осажденный на анод 5, согласно следствиям из леммы Лоренца [Григорьев А.Д. Электродинамика и техника СВЧ / М.: «Высшая школа», 1990, 335 с.], возбуждает в анодно-сеточной линии первого каскада усиления (она же катодно-сеточная линия второго каскада усиления) электромагнитные волны, бегущие как вправо, так и влево (в плоскости чертежа). Поперечная компонента возбужденного электрического поля вызывает появление (увеличение) автоэмиссионного тока с микроострий второго каскада усиления. Для остальных каскадов процесс аналогичен. В последнем каскаде автоэмиссионный ток микроострий возбуждает электромагнитные волны в анодно-сеточной линии, которая плавно расширяется и переходит в выходной волновод 6, с которого снимается усиленный СВЧ-сигнал. Для устранения возможных отражений от концов анодно-сеточных и катодно-сеточных линий применены поглощающие покрытия и вставки 4, выполненные в виде плавных переходов для уменьшения коэффициента отражения.
Диаметры отверстий 2 в сетке значительно меньше длины волны, соответствующей наиболее высокой рабочей частоте усилителя. Это исключает прямое проникновение СВЧ-сигнала из катодно-сеточной линии в анодно-сеточную линию, что обеспечивает ВЧ-развязку между каскадами усиления. Это особенно важно для первого (входного) каскада, т.к. наличие ВЧ-развязки увеличивает входное сопротивление усилителя в целом и уменьшает входную емкость. Количество микротриодов вдоль направления распространения электромагнитной волны одного каскада усиления, а также плотность упаковки микротриодов зависит от требуемого коэффициента усиления каскада и, в общем случае, может быть произвольной. Для первого (входного) каскада количество микротриодов и плотность их упаковки также определяет входную емкость усилителя и выбирается, основываясь на значении верхней частоты рабочего диапазона усилителя.
Для случая, когда протяженность матрицы микротриодов соизмерима с длиной волны входного сигнала, фазы токов автоэмиссии каждого из микротриодов будут отличаться друг от друга и соответствовать фазе вызвавшей эти токи электромагнитной волны (бегущей вправо для конструкции, представленной на фиг. 1). Именно поэтому последующие каскады усиления должны быть расположены правее (см. фиг. 1) предыдущих каскадов.
На фиг. 2 схематично представлена модифицированная конструкция заявляемого технического решения - каскадного распределенного усилителя, отличающаяся от конструкции, представленной на фиг. 1, тем, что расстояние от плоскости катода (следует понимать плоскость, на которой расположены микроострия) до плоскости сетки не равно расстоянию от плоскости сетки до плоскости анода. Для уменьшения ВЧ отражений переходы анодно-сеточной линии предыдущего каскада усиления в катодно-сеточную линию последующего каскада усиления сделаны плавными. Наличие плавных переходов несколько увеличивает продольные размеры усилителя. В остальном принципы функционирования устройств идентичны.
На представленных чертежах для удобства восприятия изображены конструкции только с тремя каскадами усиления, однако число каскадов усиления зависит от требуемого коэффициента усиления и может быть произвольным. Сетка может быть изолирована от катода с помощью диэлектрика.
Технически заявленное устройство может быть реализовано с применением металлопленочных технологий и технологии выращивания углеродных нанотрубок, характерных для вакуумной автоэмиссионной микроэлектроники [Фурсей Г.Н. Автоэлектронная эмиссия. / С-Пб., «Лань», 2012, 322 с.].
Источники информации:
1. Ginston EX., Hewlett W.R., Jasberg J.H. Distributed amplification // Proc. IRE. 1948. V. 36. P. 956.
2. Кабанов И.Н. Расчет микровакуумных триодов на матричных автоэмиссионных катодах // 8-я международная конференция КрыМиКо, сентябрь 1998, с. 205-207.
3. Патент США US 4987377 А, МПК: H01J 3/02; H03F 1/18; H03F 3/60; (IPC1-7): H03F 3/60, опубл. 22.01.1991.
4. Соколов Д.В., Трубецков Д.И. Микроэлектронный автоэмиссионный усилитель со скрещенными полями // Журнал технической физики, 2000, том 70, вып. 1, с. 136-138.
5. Патент RU №2098882, МПК: H01J 21/20, H03F 3/60; опубл. 10.12.1997.
6. Силин Р.А., Сазонов В.П. Замедляющие волноводы / М.: «Советское радио», 1966, 632 с.
7. McGruer N.E., Johnson А.С., McKnight S.W. Prospect for a 1 THz Vacuum Microelectronic Microstrip Amplifier // IEEE Trans. on Electron Devices, vol. 38, No. 3, March 1991.
8. Фурсей Г.Н. Автоэлектронная эмиссия. / С-Пб., «Лань», 2012, 322 с.
9. Григорьев А.Д. Электродинамика и техника СВЧ / М.: «Высшая школа», 1990, 335 с.
название | год | авторы | номер документа |
---|---|---|---|
КАСКАДНЫЙ УСИЛИТЕЛЬ СВЧ | 2016 |
|
RU2634185C1 |
РАСПРЕДЕЛЕННЫЙ УСИЛИТЕЛЬ СВЧ-ДИАПАЗОНА | 1993 |
|
RU2098882C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ АВТОЭМИССИОННОГО КАТОДА ИЗ УГЛЕРОДНОГО МАТЕРИАЛА | 2016 |
|
RU2658304C2 |
Способ изготовления катодного узла микротриода с трубчатым катодом из нанокристаллической алмазной пленки (варианты) | 2022 |
|
RU2794423C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНО-СЕТОЧНОГО УЗЛА С УГЛЕРОДНЫМ АВТОЭМИССИОННЫМ КАТОДОМ | 2015 |
|
RU2589722C1 |
КАТОДНО-СЕТОЧНЫЙ УЗЕЛ С АВТОЭМИССИОННЫМ КАТОДОМ ИЗ УГЛЕРОДНОГО МАТЕРИАЛА | 2016 |
|
RU2644416C2 |
Автоэмиссионный эмиттер с нанокристаллической алмазной пленкой | 2021 |
|
RU2763046C1 |
МИКРОЭЛЕКТРОННЫЙ СВЧ-ТРИОД | 1993 |
|
RU2046439C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНО-СЕТОЧНОГО УЗЛА С АВТОЭМИССИОННЫМ КАТОДОМ | 2019 |
|
RU2713381C1 |
АВТОЭЛЕКТРОННЫЙ МИКРОТРИОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2006 |
|
RU2360321C2 |
Изобретение относится к области электронных приборов СВЧ, в частности к вакуумным усилителям с распределенным взаимодействием. Техническим результатом является снижение входной емкости распределенного усилителя и, как следствие, увеличение верхней границы рабочего диапазона частот, а так же снижение массогабаритных показателей распределенного усилителя. Распределенный усилитель состоит из нескольких каскадов усиления на основе матрицы микротриодов с автоэлектронными катодами. Выходная анодно-сеточная линия предыдущего каскада является входной катодно-сеточной линией последующего усилительного каскада. Размеры матрицы микротриодов входного усилительного каскада выбираются исходя из значения верхней границы рабочего диапазона частот. Число усилительных каскадов выбирается исходя из требуемых значений коэффициента усиления и выходной мощности. 2 з.п. ф-лы, 2 ил.
1. Каскадный распределенный усилитель СВЧ, включающий в себя каскадное соединение нескольких одинаковых или различных по длине усилительных каскадов на основе микротриодов с автоэлектронными катодами, в котором входной волновод плавно сужается и образует катодно-сеточную линию входного усилительного каскада, при этом диаметры отверстий катодно-сеточной линии входного усилительного каскада меньше длины волны, соответствующей наиболее высокой рабочей частоте усилителя, а его анодно-сеточная линия является катодно-сеточной линией последующего усилительного каскада, при этом анодно-сеточная линия выходного усилительного каскада плавно расширяется и переходит в выходной волновод.
2. Усилитель по п. 1, отличающийся тем, что расстояние катод-сетка не равно расстоянию сетка-анод соответствующих сеточных линий.
3. Усилитель по п. 1 или 2, отличающийся тем, что для устранения возможных отражений от концов анодно-сеточных и катодно-сеточных линий применены поглощающие покрытия и вставки, выполненные в виде плавных переходов для уменьшения коэффициента отражения.
РАСПРЕДЕЛЕННЫЙ УСИЛИТЕЛЬ СВЧ-ДИАПАЗОНА | 1993 |
|
RU2098882C1 |
АВТОЭЛЕКТРОННЫЙ МИКРОТРИОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2006 |
|
RU2360321C2 |
US 4987377 A, 22.01.1991 | |||
US 5666019 A1, 09.09.1997. |
Авторы
Даты
2017-10-24—Публикация
2016-08-22—Подача