Изобретение относится к нефтедобывающей промышленности, в частности к установкам для эжекции газа в поток жидкости в системах поддержания пластового давления.
Высокие требования к рациональному использованию природных ресурсов, а также современные экологические нормы и стандарты требуют создания устройств для утилизации попутного нефтяного газа (ПНГ) без сжигания его на факельных установках. Одним из способов утилизации низконапорного ПНГ является закачка его в пласт через систему поддержания пластового давления путем смешивания с водой с помощью эжектирующих устройств.
Известны эжекторы, предназначенные для смешения двух разнофазных сред, в которых рабочая жидкость, обладающая высоким статическим давлением, проходя через сужающийся участок, теряет давление до значений давления эжектируемого газа, смешивается с ним и увлекается в коническую приемную камеру. Далее смешанный поток поступает в цилиндрическую камеру смешения, а затем в диффузор, в результате чего образуется равномерная смесь двух сред, первоначально находившихся в разных фазах (Соколов Е.Я., Зингер Н.М. Струйные аппараты. - 3-е изд. перераб. - М.: Энергоатомиздат, 1989. - с. 36; Цегельский В.Г. Двухфазные струйные аппараты. М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 408 с.). Описанное устройство обладает высоким коэффициентом эжекции. Недостатком является высокий уровень гидравлических потерь напора (около 50%) при прохождении потоком цилиндрической камеры смешения.
Известно устройство для эжекции низконапорного газа в поток жидкости (патент РФ № 2508477, МПК F04F 5/04, опубл. 27.02.2014), выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержащее конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости, а щель эжекции образована внешней конусной поверхностью сопла конфузора и внутренней криволинейной поверхностью входного отверстия диффузора. Данное устройство характеризуется невысокими гидравлическими потерями напора (не более 10-20%). Данное устройство принято за прототип.
Общим недостатком приведенных устройств является высокая чувствительность к изменениям входных параметров, таких как расход рабочей среды через эжектор и давление на его входе.
Задачей изобретения является разработка устройства для эжекции низконапорного ПНГ в водовод системы поддержания пластового давления с возможностью регулирования площади проходного сечения конфузора.
Технический результат, на достижение которого направлено изобретение, заключается в обеспечении стабильности работы эжектора в условиях изменяющихся технологических параметров его работы, таких как давление воды на входе в эжектор, расход воды через эжектор, давление в газовой линии, что позволяет обеспечить бесперебойную подачу смеси воды и ПНГ в систему поддержания пластового давления, повысить суммарный коэффициент эжекции, и как следствие снизить объемы ПНГ, сжигаемого на факельных установках.
Поставленная задача решается с помощью регулируемого водогазового эжектора в трубопроводе системы поддержания пластового давления, выполненного в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, содержащий входной конфузор, диффузор, патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке воды, причем минимальный диаметр входного отверстия диффузора составляет (1,05-1,15) от диаметра сопла конфузора.
В отличие от прототипа на входе конфузора установлена с возможностью перемещения вдоль его центральной оси регулировочная муфта с конусной иглой, расположенной вдоль этой оси и входящей конусной частью в конфузорно-диффузорный переход для изменения площади его проходного сечения при перемещении иглы.
Согласно изобретению регулировочная муфта включает цилиндрический корпус с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами и расположенную внутри него втулку, на которой закреплены взаимно-перпендикулярные лопасти, в центре пересечения которых выполнено гнездо для установки конусной иглы, причем корпус имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора, а на прилегающей к конфузору поверхности втулки выполнены канавки с расположенными в них уплотнительными кольцами.
Указанный технический результат достигается благодаря предложенной конструкции эжектора с конусной иглой, перемещение которой вдоль оси конфузора посредством регулировочной муфты позволяет изменять площадь проходного сечения конфузора в области самого узкого участка в случае изменения параметров работы эжектора, таких как давление воды на входе в эжектор, расход воды через эжектор, давление газа. Это позволяет добиться требуемого давления в зоне эжекции и обеспечить стабильную работу эжектора даже при значительных изменениях технологических параметров его работы без снижения коэффициента эжекции.
Сущность изобретения поясняется чертежами, где на фиг. 1 представлена принципиальная схема устройства регулируемого водогазового эжектора; на фиг. 2 - место А фиг. 1 увеличенная зона эжекции; на фиг. 3 - сечение Б-Б фиг. 1.
Регулируемый водогазовый эжектор содержит входной конфузор 1, диффузор 2 с расположенной между ними щелью эжекции 3, патрубок 4 для подачи газа, сообщающийся со щелью эжекции 3 на входе конфузора 2, в месте соединения его с трубопроводом подачи воды установлена регулировочная муфта 5 с конусной иглой 6, которая может перемещаться вдоль центральной оси конфузора 2. Конусная игла 6 расположена вдоль этой оси и входит в конфузорно-диффузорный переход, изменяя при перемещении площадь его проходного сечения. Регулировочная муфта 5 включает корпус 7 с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами 8. Внутри корпуса 7 расположена втулка 9, на которой закреплены четыре взаимно-перпендикулярные лопасти 10, в центре пересечения которых выполнено гнездо 11 для установки конусной иглы 6. Корпус 7 имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора 1.
Устройство работает следующим образом. В конфузор 1, представляющий собой переход от большего сечения к меньшему через плавно сужающийся участок, подается поток воды. За счет постепенного сужения, на выходе конфузора происходит увеличение скорости потока воды с одновременным снижением статического давления потока ниже давления газа за счет перехода потенциальной энергии в кинетическую энергию потока в соответствии с законом Бернулли. Далее поток воды проходит через щель эжекции 3, в которую также поступает поток газа через патрубок 4. Контактируя в зоне эжекции, поток воды и поток газа смешиваются и поступают в диффузор 2, где происходит дальнейшее смешение потоков и восстановление статического давления за счет снижения скорости потока. Перемещение регулировочной муфты 5 вдоль оси конфузора позволяет перемещать конусную иглу 6, тем самым увеличивая или уменьшая площадь проходного сечения конфузора в самом узком месте, что дает возможность оперативно изменять конфигурацию проточной части эжектора в соответствии с изменяющимися технологическими параметрами его работы, что позволяет получить в зоне эжекции требуемое давление воды (ниже давления газа).
Диаметр D1 конфузора рассчитывается по закону Бернулли, исходя из условия создания статического давления в зоне эжекции, ниже давления в газопроводе при условии истечения максимального расхода воды, максимального давления газа и минимального давления воды:
где D4 - наибольший диаметр конфузора;
Рводы (min) - минимальное давление воды на входе в эжектор;
Ргаза (max) - максимальное давление газа, поступающего через патрубок 4;
Qводы (max) - максимальный расход воды через эжектор;
ρводы - плотность воды.
Диаметр D2 определяется соотношением D2=(1,05÷1,15)⋅D1, т.е. минимальный диаметр входного отверстия диффузора D2 превышает не более чем на 15% диаметр сопла D1 конфузора. Диаметр D3 иглы рассчитывается по закону Бернулли с учетом минимального расхода воды через эжектор, минимального давления газа и максимального давления воды на входе в эжектор:
где Рводы (max) - максимальное давление воды на входе в эжектор;
Ргаза (min) - минимальное давление газа, поступающего через патрубок 4;
Qводы (min) - минимальный расход воды через эжектор.
Требуемый диаметр иглы в месте входа в зону эжекции D5 рассчитывается по закону Бернулли исходя из текущих давлений воды и газа, а также текущего расхода воды:
где Рводы - текущее давление воды на входе в эжектор;
Ргаза - текущее давление газа, поступающего через патрубок 4;
Qводы - текущий расход воды.
Примеры реализации изобретения.
Необходимо разработать регулируемый эжектор для закачки низконапорного попутного газа в трубопровод системы поддержания пластового давления. Известно, что плотность пластовой воды ρводы=1150 кг/м3, диапазон расхода воды Qводы=10÷15 м3/час, диапазон давлений на входе в эжектор Рводы=13÷15 МПа, диапазон изменения давления газа Ргаза=0,3÷0,5 МПа, диаметр конфузора 159 мм.
По формуле (1) рассчитывается диаметр конфузора: D1=5,97 мм. Далее определяется минимальный диаметр входного отверстия диффузора D2=(1,05÷1,15)⋅D1=6,27÷6,86 мм. Затем по формуле (2) рассчитывается диаметр иглы с учетом минимального расхода воды через эжектор, максимального давления воды на входе в эжектор и минимального давления газа D3=3,73 мм. Далее по формуле (2) рассчитывается требуемый диаметр конусной иглы в месте входа в зону эжекции - D5 в зависимости от текущих технологических параметров работы установки. Например, при давлении газа 0,3 МПа, давлении воды на входе в эжектор 13,5 МПа, расход воды через эжектор 14 м3/час, требуемый диаметр иглы в месте входа в зону эжекции (самого узкого места конфузора) должен быть равен D5=1,81 мм. Далее, в процессе работы регулируемого эжектора, диаметр иглы изменяется в большую или меньшую сторону в зависимости от характера изменения параметров работы.
Таким образом, предложенное изобретение обеспечивает стабильную работу водогазового эжектора в условиях изменяющихся технологических параметров его работы, что позволяет бесперебойно подавать смесь воды и ПНГ в систему поддержания пластового давления, повысить коэффициент эжекции, и, как следствие, снизить объемы ПНГ, сжигаемого на факельных установках.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ЭЖЕКЦИИ НИЗКОНАПОРНОГО ГАЗА В ПОТОК ЖИДКОСТИ | 2012 |
|
RU2508477C1 |
УСТРОЙСТВО ДЛЯ ЭЖЕКЦИИ НИЗКОНАПОРНОГО ГАЗА С МЕХАНИЗМОМ СТАБИЛИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА ВПРЫСКА ГАЗА В ПОТОК ЖИДКОСТИ | 2015 |
|
RU2587816C1 |
СПОСОБ ПОДГОТОВКИ И ЗАКАЧКИ МЕЛКОДИСПЕРСНОЙ ВОДОГАЗОВОЙ СМЕСИ В НАГНЕТАТЕЛЬНУЮ СКВАЖИНУ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭТОЙ СМЕСИ | 2015 |
|
RU2659444C2 |
СИСТЕМА СЕПАРАЦИИ ВОДОГАЗОНЕФТЯНОЙ СМЕСИ | 2015 |
|
RU2602099C1 |
Водоструйный газожидкостный эжектор | 1973 |
|
SU484378A1 |
СПОСОБ АЭРАЦИИ ЖИДКОСТЕЙ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД | 2000 |
|
RU2194016C2 |
Перископ для передачи оптических сигналов из реакционного пространства высокотемпературных реакторов | 1983 |
|
SU1636643A1 |
ЭЖЕКТОР-КОНДЕНСАТОР | 1995 |
|
RU2079726C1 |
Контактное массообменное устройство | 1984 |
|
SU1243783A1 |
УСТАНОВКА ДЛЯ СЖИГАНИЯ ВОДОРОДА НА АТОМНОЙ ЭЛЕКТРОСТАНЦИИ | 2003 |
|
RU2260212C2 |
Эжектор предназначен для эжекции газа в поток жидкости в системах поддержания пластового давления. Эжектор содержит входной конфузор 1, диффузор 2 с расположенной между ними щелью эжекции 3, патрубок 4 для подачи газа, сообщающийся со щелью эжекции 3 на входе конфузора 2, в месте соединения его с трубопроводом подачи воды установлена регулировочная муфта 5 с конусной иглой 6, которая может перемещаться вдоль центральной оси конфузора 2. Конусная игла 6 расположена вдоль этой оси и входит в конфузорно-диффузорный переход, изменяя при перемещении площадь его проходного сечения. Регулировочная муфта 5 включает корпус 7 с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами 8. Внутри корпуса 7 расположена втулка 9, на которой закреплены четыре взаимно-перпендикулярные лопасти 10, в центре пересечения которых выполнено гнездо 11 для установки конусной иглы 6. Корпус 7 имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора 1. Технический результат заключается в обеспечении стабильности работы эжектора в условиях изменяющихся технологических параметров его работы. 1 з.п. ф-лы, 3 ил.
1. Водогазовый эжектор в трубопроводе системы поддержания пластового давления, выполненный в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, содержащий входной конфузор, диффузор, патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке воды, причем минимальный диаметр входного отверстия диффузора составляет от 1,05 до 1,15 от диаметра сопла конфузора, отличающийся тем, что на входе конфузора установлена с возможностью перемещения вдоль его центральной оси регулировочная муфта с конусной иглой, расположенной вдоль этой оси и входящей конусной частью в конфузорно-диффузорный переход для изменения площади его проходного сечения при перемещении иглы.
2. Водогазовый эжектор по п. 1, в котором регулировочная муфта включает цилиндрический корпус с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами и расположенную внутри него втулку, на которой закреплены взаимно-перпендикулярные лопасти, в центре пересечения которых выполнено гнездо для установки конусной иглы, причем корпус имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора, а на прилегающей к конфузору поверхности втулки выполнены канавки с расположенными в них уплотнительными кольцами.
УСТРОЙСТВО ДЛЯ ЭЖЕКЦИИ НИЗКОНАПОРНОГО ГАЗА В ПОТОК ЖИДКОСТИ | 2012 |
|
RU2508477C1 |
Смесительное устройство | 1989 |
|
SU1690832A1 |
СТРУЙНЫЙ АППАРАТ | 2004 |
|
RU2282064C2 |
СОШНИК ДЛЯ МНОГОУРОВНЕВОГО ОЧАГОВОГО ВНЕСЕНИЯ МИНЕРАЛЬНЫХ УДОБРЕНИЙ | 2007 |
|
RU2352094C2 |
US 20140080016 A1, 20.03.2014. |
Авторы
Даты
2017-11-21—Публикация
2016-07-19—Подача