Способ выбора скорости передачи элементов сигнала в радиомодемах Российский патент 2018 года по МПК G01R23/00 

Описание патента на изобретение RU2640431C1

Изобретение относится к области радиотехники и может быть использовано для оперативного измерения эффективной ширины спектра частот узкополосных радиосигналов и определения скорости передачи элементов сигналов в радиомодемах.

Известен способ измерения скорости передачи цифровой информации, реализованный в устройстве для измерения скорости передачи цифровой информации по патенту RU №2024217, H04Q 5/16 (Заявка: 4935316/09, 12.05.1991).

Сущность известного способа состоит в том, что под действием импульсов, поступающих по входу устройства, отсчитывается 16 временных интервалов, каждый из которых равен периоду частоты 2048 кГц. Затем дешифратор выделяет импульсы временных интервалов: первый, восьмой, шестнадцатый, девятый, одиннадцатый. После чего счетчик формирует код адреса временных интервалов - каналов, число которых соответствует числу канальных интервалов группового тракта (ГТ). После чего на вход устройства поступает информационная последовательность, каждый бит которой записывается последовательно в регистр с помощью импульсов тактовой частоты, синхронных, но сдвинутых на полпериода относительно импульсов тактовой частоты. После записи входной информации в регистр по переднему фронту тактовых импульсов она переписывается в параллельном виде в регистр. Перезапись осуществляется по заднему фронту (спаду) импульса при одновременном наличии сигнала на управляющем входе регистра, формируемого с выхода дешифратора. Накопление порции информации в регистре и последующая перезапись после накопления позволяют осуществлять ее независимую обработку за время длительности канальных интервалов, содержащихся в цикле ГТ. Из регистра записанная информация выдается по заднему фронту импульсов на первый логический вход триггера (а также на выход устройства при необходимости). При появлении на входе триггера "флажка", который представлен всегда битом "логическая единица", триггер переключается по заднему фронту импульса в единичное состояние, а по сигналу с выхода дешифратора - в нулевое состояние. За "флажком" следуют биты информации, значения которых соответствуют значениям бит в дискретном канале связи, а распределение и количество бит в каждом ВК зависят от скорости передачи информации. Дешифратор декодирует это число принятых бит, соответствующее номиналу скорости передачи информации в дискретном канале связи, и выдает его на информационные входы ОЗУ.

Недостаток указанного способа заключается в том, что он реализуем только после процедур демодуляции радиосигнала.

Известен способ оценки ширины полосы частот узкополосных радиосигналов путем вычисления энергетического спектра и его второго центрального момента в частотной области, представленный в Гоноровский И.С., Радиотехнические цепи и сигналы, М., Радио и связь, 1977, с. 589.

Этот способ реализуется аппаратно-программным методом с использованием алгоритмов дискретного преобразования Фурье.

Недостатком этого способа являются высокие требования к скорости и объему вычислений при спектральной обработке в частотной области, поскольку для получения спектральных оценок этим способом необходимо значительное время обработки отсчетов сигнала по истечении интервала наблюдения.

В качестве прототипа выбран «Способ оценки ширины спектра узкополосных радиосигналов» по патенту РФ №2128845, опубликованному 10.04.1999 г., по заявке 95107623/09, 12.05.1995 г.

Способ-прототип заключается в том, что оценка ширины спектра узкополосных радиосигналов включает измерение двух оценок. Средней частоты этого сигнала - центра тяжести энергетического спектра ω0 и квазичастоты А определение оценки ширины спектра Δω осуществляют по формуле . Причем значение квазичастоты вычисляют по формуле , где - средняя мощность процесса на интервале измерения, a G(ω) - спектр мощности (на ограниченном интервале равен отношению энергии к длительности интервала). При этом обе оценки формируются во временной области по мере поступления сигнала с возможностью последующего непрерывного уточнения.

Недостаток способа-прототипа заключается в том, что он при его реализации требует постоянного перехода то в частотную, то во временную области. А получаемые на его основе оценки в условиях шумов, приводящих к искажению функции огибающей спектральной мощности спектра, не позволят непосредственное их использование для реализации автоматического выбора скорости передачи элементов сигнала в радиомодемах.

Цель предлагаемого способа заключается в расширении области его применения, а именно в обеспечении возможности непосредственного его использования для реализации автоматического выбора скорости передачи элементов сигнала в радиомодемах, в том числе в условиях шумов, приводящих к искажению функции огибающей спектральной мощности спектра.

Поставленная цель достигается тем, что принимают сигнал, измеряют его ширину спектра, значение которой уточняют по мере поступления сигнала. При этом измеряют уровень мощности спектральной составляющей сигнала с максимальным значением амплитуды, а ширину спектра сигнала измеряют в пределах полосы его половинной мощности. Причем решение о выбранном номинале скорости передачи осуществляют по результатам сравнения измеренных значений ширины спектра с предварительно рассчитанными значениями, соответствующими тем номиналам скоростей, для работы с которыми предназначены радиомодемы. Искомым значением является то, различия с которым по результатам измерения наименьшие.

Благодаря новой совокупности существенных признаков в заявляемом способе, заключающихся в измерении уровня мощности спектральной составляющей сигнала с максимальным значением амплитуды и использовании в качестве измеряемой величины значения ширины спектра сигнала, измеряемого в пределах полосы его половинной мощности, а также в принятии решения о выбранном номинале скорости передачи по результатам сравнения измеренных значений с предварительно рассчитанными, обеспечивается расширение области его применения.

Заявленный способ поясняется чертежами, на которых показаны:

фиг. 1 - принятый для обработки сигнал S0(t) в шумах;

фиг. 2 - модуль спектра принятого сигнала S0(t) с указанными границами F2 и F1 ширины спектра по уровню половинной мощности (горизонтальная пунктирная линия) от уровня мощности спектральной составляющей сигнала с максимальным значением амплитуды и измеренное значение ширины спектра F21, полученное как разность между значениями F2 и F1;

фиг. 3 - сигнал Z1(t) и модуль его спектра с указанными границами F4 и F5 ширины спектра по уровню половинной мощности (горизонтальная пунктирная линия) от уровня мощности спектральной составляющей сигнала с максимальным значением амплитуды и измеренное значение ширины спектра F54, полученное как разность между значениями F5 и F4;

фиг. 4 - сигнал Z2(t) и модуль его спектра , с указанными границами F7 и F8 ширины спектра по уровню половинной мощности (горизонтальная пунктирная линия) от уровня мощности спектральной составляющей сигнала с максимальным значением амплитуды и измеренное значение ширины спектра F87, полученное как разность между значениями F8 и F7.

Реализация заявляемого способа предполагает последовательное выполнение следующих процедур.

1. Принимают сигнал.

Процедуры приема аналоговых сигналов известны и описаны, например, в патенте на изобретение RUS 2454014 от 16.12.2010.

На фиг. 1 показан фрагмент принятого аналогового сигнала S0(t).

2. Измеряют уровень мощности спектральной составляющей сигнала с максимальным значением амплитуды.

Процедура измерения уровня мощности спектральной составляющей сигнала с максимальным значением амплитуды предполагает формирование спектра. Процедуры формирования спектра, а также измерения уровня мощности спектральных составляющих известны и описаны, например, в патенте на изобретение RUS 2382495 от 17.02.2009 и патенте на изобретение RUS 2419968 от 03.08.2009.

3. Ширину спектра сигнала измеряют в пределах полосы его половинной мощности.

Указанный подход к измерению ширины спектра сигнала известен и описан, например, на стр. 21, см. Григорьев В.А. Сигналы современных зарубежных систем электросвязи: Учебник. - СПб.: ВАС, 207. - 368 с.

На фиг. 2 показан модуль спектра принятого сигнала S0(t).

4. Решение о выбранном номинале скорости передачи осуществляют по результатам сравнения измеренных значений ширины спектра с предварительно рассчитанными значениями, соответствующими тем номиналам скоростей, для работы с которыми предназначены радиомодемы. Искомым значением является то, различия с которым по результатам измерения наименьшие.

Взаимосвязь ширины спектра сигнала со скоростью передачи его элементов известна и описана, например, на стр. 21, см. Григорьев В.А Сигналы современных зарубежных систем электросвязи: Учебник. - СПб.: ВАС, 207. - 368 с.

Предварительно рассчитанные значения ширины спектра, соответствующие тем номиналам скоростей, для работы с которыми предназначены радиомодемы, можно получить в результате предварительных измерений, проведенных в соответствии с п. 3 по отношению к тестовым сигналам, которые могут быть сформированы посредством тестового генератора. Процедуры использования предварительно рассчитанных данных, полученных по результатам измерений параметров предварительно сформированных сигналов посредством тестового генератора, известны. Также известны процедуры поиска наименьших различий измеренного значения с предварительно рассчитанными. Например, см. патент на изобретение RUS 2423735 от 17.03.2010.

В качестве примера на фиг. 3 и фиг. 4 представлены предварительно сформированные сигналы Z1(t) и Z2(t), соответствующие двум градациям номиналов скоростей, для работы с которыми предназначены радиомодемы и показаны модули их спектров и , с соответствующими измеренными значениями ширины спектра F54 и F87. Здесь F4, F5, F7, F8 - соответственно границы ширины спектров сигналов Z1(t) и Z2(t) по уровню их половинной мощности. Принятие решения об искомом значении градации скорости осуществляется путем сравнения измеренного значения F21 с предварительно рассчитанными значениями F54 и F87. В рассмотренном примере по результатам измерения скорость принятого сигнала S0(t) будет соответствовать скорости сигнала Z1(t), т.к. значение F21 примерно равно F54 и значительно отличается от F87.

Необходимость использования процедур сравнения рассчитанного значения ширины спектра с предварительно вычисленными значениями обусловлена наличием канальных шумов, приводящих к искажению функции огибающей спектральной мощности спектра. В эксперименте сигнал S0(t) соответствовал сигналу Z1(t) по скорости передачи, хотя принимался в шумах. В результате функция огибающей спектральной мощности его спектра (см. фиг. 2) исказилась, поэтому его измеренная ширина численно не соответствовала значению ширины спектра сигнала Z1(t). И решение можно было принять только по результатам сравнения с заранее измеренными величинами.

Таким образом, благодаря использованию новой совокупности существенных признаков достигается цель предлагаемого способа, заключающаяся в обеспечении возможности непосредственного его использования для реализации автоматического выбора скорости передачи элементов сигнала в радиомодемах, в том числе в условиях шумов, приводящих к искажению функции огибающей спектральной мощности спектра.

Похожие патенты RU2640431C1

название год авторы номер документа
Способ выбора вида модуляции сигналов 2021
  • Дворников Сергей Викторович
  • Царелунго Анатолий Борисович
RU2755607C1
Способ выбора скорости передачи в радиолиниях 2020
  • Дворников Сергей Викторович
  • Царелунго Анатолий Борисович
RU2744037C1
Способ выбора скорости передачи в радиолиниях 2022
  • Гордиенко Дмитрий Юрьевич
  • Дворников Сергей Викторович
  • Сличенко Михаил Павлович
RU2781567C1
Способ передачи и приема информации с использованием частотно-манипулированных сигналов 2023
  • Дворников Сергей Сергеевич
  • Лященко Станислав Алексеевич
  • Пшеничников Александр Викторович
  • Федосеев Денис Олегович
  • Дворников Сергей Викторович
RU2812621C1
Способ передачи информации по коротковолновому каналу связи с использованием частотно-манипулированных сигналов 2019
  • Дворников Сергей Викторович
  • Пшеничников Александр Викторович
  • Балыков Антон Александрович
  • Овчинников Георгий Ревмирович
  • Присяжнюк Андрей Сергеевич
RU2705357C1
Способ измерения длительности импульсов 2023
  • Дворников Сергей Сергеевич
  • Дворников Сергей Викторович
  • Рабин Алексей Владимирович
  • Гордиенко Дмитрий Юрьевич
  • Погорелов Андрей Анатольевич
RU2805972C1
СПОСОБ ПЕРЕДАЧИ АБОНЕНТСКИХ СИГНАЛОВ С АДАПТИВНОЙ СТУПЕНЧАТОЙ ДИСКРЕТИЗАЦИЕЙ ПО ЛИНИИ СВЯЗИ С ОТКАЗАМИ, РАБОТАЮЩЕЙ НА ВЫБРАННОЙ СКОРОСТИ ПЕРЕДАЧИ 2021
  • Стародубцев Юрий Иванович
  • Дворников Сергей Викторович
  • Иванов Сергей Александрович
  • Вершенник Елена Валерьевна
  • Дворников Александр Сергеевич
  • Стародубцев Петр Юрьевич
RU2771740C1
Способ формирования модифицированной кодовой последовательности Баркера в системе КВ радиосвязи 2021
  • Дворников Сергей Сергеевич
  • Дворников Сергей Викторович
  • Пшеничников Александр Викторович
  • Марков Евгений Вячеславович
  • Рабин Алексей Владимирович
RU2777281C1
Способ помехозащищенной передачи информации на основе амплитудной манипуляции 2023
  • Пшеничников Александр Викторович
  • Дворников Сергей Викторович
  • Чудаков Андрей Михайлович
  • Дворников Сергей Сергеевич
RU2804937C1
Способ автоматического обнаружения узкополосных сигналов 2021
  • Дворников Сергей Викторович
  • Крячко Александр Федотович
  • Пшеничников Александр Викторович
  • Тимощук Елизавета Дмитриевна
  • Дворников Сергей Сергеевич
RU2767183C1

Иллюстрации к изобретению RU 2 640 431 C1

Реферат патента 2018 года Способ выбора скорости передачи элементов сигнала в радиомодемах

Изобретение относится к области радиотехники и может быть использовано для оперативного измерения эффективной ширины спектра частот узкополосных радиосигналов и определения скорости передачи элементов сигналов в радиомодемах. Сущность заявленного технического решения заключается в том, что принимают сигнал, измеряют его ширину спектра, значение которой уточняют по мере поступления сигнала. При этом измеряют уровень мощности спектральной составляющей сигнала с максимальным значением амплитуды, а ширину спектра сигнала измеряют в пределах полосы его половинной мощности. Причем решение о выбранном номинале скорости передачи осуществляют по результатам сравнения измеренных значений ширины спектра с предварительно рассчитанными значениями, соответствующими тем номиналам скоростей, для работы с которыми предназначены радиомодемы. Искомым значением является то, различия с которым по результатам измерения наименьшие. Технический результат заявленного способа заключается в расширении области его применения, а именно в обеспечении возможности непосредственного его использования для реализации автоматического выбора скорости передачи элементов сигнала в радиомодемах, в том числе в условиях шумов, приводящих к искажению функции огибающей спектральной мощности спектра. 4 ил.

Формула изобретения RU 2 640 431 C1

Способ выбора скорости передачи элементов сигнала в радиомодемах, заключающийся в том, что принимают сигнал, измеряют его ширину спектра, значение которой уточняют по мере поступления сигнала, отличающийся тем, что измеряют уровень мощности спектральной составляющей сигнала с максимальным значением амплитуды, а ширину спектра сигнала измеряют в пределах полосы его половинной мощности, причем решение о выбранном номинале скорости передачи осуществляют по результатам сравнения измеренных значений ширины спектра с предварительно рассчитанными значениями, соответствующими тем номиналам скоростей, для работы с которыми предназначены радиомодемы, искомым значением является то, различия с которым по результатам измерения наименьшие.

Документы, цитированные в отчете о поиске Патент 2018 года RU2640431C1

СПОСОБ ОЦЕНКИ ШИРИНЫ СПЕКТРА УЗКОПОЛОСНЫХ РАДИОСИГНАЛОВ 1995
  • Захарченко В.Д.
  • Штельмах А.В.
RU2128845C1
Устройство для измерения скорости девиации частоты 1980
  • Самородов Анатолий Михайлович
  • Панюков Александр Алексеевич
  • Черкасов Вадим Вячеславович
SU875294A2
Статья: "СПОСОБЫ ПОВЫШЕНИЯ СКОРОСТИ ПЕРЕДАЧИ ИНФОРМАЦИИ В СИСТЕМАХ КВ-РАДИОСВЯЗИ", 01.03.2016
СПОСОБ ОБНАРУЖЕНИЯ МНОЖЕСТВА УЗКОПОЛОСНЫХ РАДИОСИГНАЛОВ В ШИРОКОЙ ПОЛОСЕ ЧАСТОТ 2010
  • Нохрин Олег Александрович
  • Калмычков Игорь Евгеньевич
  • Печурин Вячеслав Викторович
RU2429494C1
US 2005047486 A1, 03.03
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 640 431 C1

Авторы

Зайцев Дмитрий Владимирович

Дворников Сергей Викторович

Дворников Сергей Сергеевич

Пшеничников Александр Викторович

Передин Юрий Григорьевич

Даты

2018-01-09Публикация

2016-07-01Подача