Спектрорадиометрический способ определения траектории распространения облаков токсичных газообразных веществ в атмосфере Российский патент 2018 года по МПК G01W1/00 

Описание патента на изобретение RU2642528C2

Изобретение относится к дистанционному зондированию атмосферы, в частности к способам исследования ее газового состава, и может быть использовано при прогнозировании последствий аварий на химически опасных объектах.

Известен способ дистанционного определения местоположения облаков токсичных газообразных веществ в атмосфере, принятый в качестве прототипа [патент №2478995, авторы: Бойко А.Ю.; Садовников Р.Н.; Шлыгин П.Е.; Самородов А.С.; Позвонков А.А.; Тюрин Д.В.; Морозов А.Н.; Табалин С.Е.; Фуфурин И.Л.]. Круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта проводят по наклонным трассам сопряженными Фурье-спектрорадиометрами. В момент географической привязки с помощью средств спутниковой навигации предварительно определяют географические координаты, а также углы между направлением на север и направлением оптических осей приемных систем спектрорадиометров. Обнаружение и идентификацию облаков газообразных веществ проводят по спектрам их собственного излучения, регистрируемым Фурье-спектрорадиометрами. С использованием полученных данных строят проекции осей полей зрения спектрорадиометров по направлениям, в которых произошло срабатывание приборов на горизонтальную плоскость, и определяют границы местоположения облака газообразного токсичного вещества.

Недостатками данного способа являются:

во-первых, способ не позволяет прогнозировать направление и траекторию распространения облаков токсичных газообразных веществ;

во-вторых, при определении местоположения облаков газообразных токсичных веществ используются все данные о срабатывании приборов, без учета различия во времени идентификации. Такой подход способствует существенному увеличению погрешности определения границ местоположения облаков газообразных токсичных веществ, поскольку лишь в случае использования при расчетах информации о срабатываниях приборов разведки, совпадающих по времени, можно утверждать, что вычисленные координаты облаков газообразных токсичных веществ относятся к одному и тому же объекту индикации.

В основу изобретения положена задача разработать способ, обеспечивающий получение следующего технического результата: определение траектории и прогнозирование направления распространения облаков токсичных газообразных веществ.

Для решения поставленной задачи в способе определения траектории распространения облаков токсичных газообразных веществ в атмосфере, основанном на определении координат идентифицированных не менее чем двумя географически привязанными Фурье-спектрорадиометрами облаков газообразных веществ по точкам пересечения проекций их осей полей зрения, проводят непрерывное круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта по наклонным трассам, используя результаты срабатывания спектрорадиометров, экспериментально устанавливают законы углового перемещения индицируемого облака относительно каждого из приборов и для каждого направления и момента времени, когда сработал один из приборов, выполняют прогнозирование направления оси поля зрения для остальных приборов, в котором они предположительно могли бы индицировать облако в тот же момент времени, по этим данным определяют координаты точек пересечения проекций осей полей зрения приборов, спроецированных на топографическую карту, и находят уравнения, описывающие изменение с течением времени координат облака, которые дают возможность прогнозировать направление и динамику его распространения, последовательность найденных координат во времени аппроксимируют линией, являющейся искомой траекторией распространения индицируемого облака зараженного воздуха.

Наиболее простой алгоритм определения положения облака по данным от двух Фурье-спектрорадиометров предполагает, что известны направления осей полей зрения двух приборов при их одновременном срабатывании. Однако на практике ситуация, когда происходит одновременное срабатывание приборов, практически невозможна, поскольку их оптические зондирующие системы сканируют пространство независимо друг от друга. В этой связи необходимо для каждого момента времени, когда сработал один из приборов, выполнить прогнозирование направления оси поля зрения другого прибора, при котором он мог бы сработать в тот же момент времени.

Поскольку угловая скорость вращения оптического блока Фурье-спектрорадиометра является постоянной, зависимость угла положения оси поля зрения от времени должна описываться линейным законом:

где αij - угол между направлением на север и продольной осью j-го спектрорадиометра в момент i-го измерения, град;

ti - момент проведения i-го измерения;

kj, bj - численные коэффициенты.

Для того чтобы уменьшить влияние случайных погрешностей, содержащихся в исходных данных, определение коэффициентов k и b можно выполнить с привлечением метода наименьших квадратов.

Реализация метода наименьших квадратов при решении рассматриваемой задачи для каждого из приборов предполагает определение k и b, обеспечивающих минимизацию следующего функционала:

где n - количество измерений.

Для определения k и b составим систему уравнений, для чего найдем соответствующие частные производные функционала (2) и приравняем их к нулю

Решив полученную систему уравнений, получаем формулы для нахождения коэффициентов k и b по методу наименьших квадратов:

Используя данные о направлениях срабатываний Фурье-спектрорадиометров для каждого из моментов времени с помощью линейного закона (1), получаем уравнения аппроксимирующих прямых для каждого их приборов.

Полученные уравнения позволяют определить, для каждого из приборов, расчетные направления их осей поля зрения, при которых они могли бы сработать в тот же момент времени, когда произошло реальное срабатывание другого спектрорадиометра.

С использованием реальных и расчетных направлений осей полей зрения строятся их проекции на горизонтальную плоскость для каждого момента срабатывания. Точка пересечения осей полей зрения приборов, построенных для одного и того же момента времени, указывает на положение облака токсичного газообразного вещества.

Координаты точек пересечения проекций осей полей зрения вычисляются по следующим формулам:

где xобл, yобл - координаты точек пересечения проекций на плоскость осей полей зрения спектрорадиометров, м;

х1, y1 - географические координаты 1-го спектрорадиометра, м;

х2, y2 - географические координаты 2-го спектрорадиометра, м;

α1, α2 - углы между направлением на север и продольной осью 1-го и 2-го спектрорадиометра соответственно, град.

С использованием метода наименьших квадратов на основе вычисленных координат облака токсичного газообразного вещества находим уравнения (9) и (10), описывающие изменение координат облака с течением времени:

Полученные уравнения полностью определяют направление и динамику распространения облака токсичного газообразного вещества. Из выражений (9) и (10) получаем уравнение траектории распространения облака токсичного газообразного вещества для графического отображения на карте:

где c, d - численные коэффициенты.

Похожие патенты RU2642528C2

название год авторы номер документа
СПЕКТРОРАДИОМЕТРИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЛАКОВ ТОКСИЧНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ 2011
  • Бойко Андрей Юрьевич
  • Садовников Роман Николаевич
  • Шлыгин Петр Евгеньевич
  • Самородов Александр Сергеевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2478995C1
Способ определения возможности применения спектрорадиометра для экологического мониторинга атмосферы 2016
  • Садовников Роман Николаевич
  • Кудымова Ирина Владимировна
  • Бойко Андрей Юрьевич
  • Шлыгин Петр Евгеньевич
  • Садовникова Светлана Викторовна
RU2649094C1
СПОСОБ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ХИМИЧЕСКИ ОПАСНЫХ ОБЪЕКТОВ 2011
  • Цапок Максим Владимирович
  • Серебренников Борис Васильевич
  • Бойко Андрей Юрьевич
  • Поторопин Евгений Борисович
  • Еремин Сергей Анатольевич
  • Нельга Дина Николаевна
  • Кулешова Елена Арутюновна
  • Игнатьева Елена Витальевна
  • Шлыгин Петр Евгеньевич
  • Самородов Александр Сергеевич
RU2469335C1
Аэростатный способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров 2018
  • Бойко Андрей Юрьевич
  • Садовников Роман Николаевич
  • Ефимов Игорь Николаевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Бархатов Дмитрий Анатольевич
RU2691668C1
СПОСОБ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ХИМИЧЕСКИ ОПАСНЫХ ОБЪЕКТОВ 2011
  • Садовников Роман Николаевич
  • Шаталов Эдуард Викторович
  • Ефимов Игорь Николаевич
  • Садовникова Светлана Викторовна
RU2458350C1
СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ 2011
  • Бойко Андрей Юрьевич
  • Ефимов Игорь Николаевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Самородов Александр Сергеевич
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2502967C2
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ТОНКОДИСПЕРСНЫХ АЭРОЗОЛЕЙ ТОКСИЧНЫХ ВЕЩЕСТВ В МЕСТАХ ИХ ХРАНЕНИЯ И УНИЧТОЖЕНИЯ ПРИ ВОЗНИКНОВЕНИИ НЕШТАТНЫХ СИТУАЦИЙ С ПОМОЩЬЮ ПАССИВНЫХ ИНФРАКРАСНЫХ СПЕКТРОМЕТРОВ 2010
  • Васюкевич Игорь Геннадьевич
  • Мацюк Григорий Владимирович
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Петухов Алексей Николаевич
  • Романюта Денис Сергеевич
RU2441220C2
Способ определения параметров аварийного радиационного источника по данным воздушной радиационной разведки местности 2021
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Кобцев Дмитрий Юрьевич
  • Сафронова Анна Владимировна
  • Шабунин Сергей Иванович
RU2755604C1
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ 2011
  • Васюкевич Игорь Геннадьевич
  • Бобров Руслан Сергеевич
  • Карташов Александр Константинович
  • Климов Сергей Николаевич
  • Мацюк Григорий Владимирович
RU2474811C1
Способ дистанционного контроля степени зараженности подстилающей поверхности аэрозолями стойких токсичных химических веществ 2018
  • Бойко Андрей Юрьевич
  • Иноземцев Валерий Александрович
  • Григорьев Александр Александрович
  • Ефимов Игорь Николаевич
  • Еремин Валерий Дмитриевич
  • Позвонков Андрей Александрович
  • Шлыгин Петр Евгеньевич
RU2691667C1

Реферат патента 2018 года Спектрорадиометрический способ определения траектории распространения облаков токсичных газообразных веществ в атмосфере

Изобретение относится к способам дистанционного зондирования атмосферы и может быть использовано для определения траектории распространения облаков токсичных газообразных веществ в атмосфере, например, в целях прогнозирования последствий аварий на химически опасных объектах. Сущность: проводят непрерывное круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта по наклонным трассам не менее чем двумя Фурье-спектрорадиометрами. Используя результаты срабатывания спектрорадиометров, экспериментально устанавливают законы углового перемещения индицируемого облака относительно каждого из приборов и для каждого направления и момента времени, когда сработал один из приборов. Прогнозируют направление оси поля зрения для остальных приборов, в котором они предположительно могли бы индицировать облако в тот же момент времени. Определяют координаты точек пересечения проекций осей полей зрения приборов, спроецированных на топографическую карту. Находят уравнения, описывающие изменение с течением времени координат облака, которые дают возможность прогнозировать направление и динамику его распространения. Последовательность найденных координат во времени аппроксимируют линией, являющейся искомой траекторией распространения индицируемого облака токсичного газообразного вещества. Технический результат: обеспечение возможности определения траектории и прогнозирования направления распространения облаков токсичных газообразных веществ.

Формула изобретения RU 2 642 528 C2

Спектрорадиометрический способ определения траектории распространения облаков токсичных газообразных веществ в атмосфере, основанный на определении координат идентифицированных не менее чем двумя географически привязанными Фурье-спектрорадиометрами облаков газообразных веществ по точкам пересечения проекций их осей полей зрения, отличающийся тем, что проводят непрерывное круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта по наклонным трассам, используя результаты срабатывания спектрорадиометров, экспериментально устанавливают законы углового перемещения индицируемого облака относительно каждого из приборов и для каждого направления и момента времени, когда сработал один из приборов, выполняют прогнозирование направления оси поля зрения для остальных приборов, в котором они предположительно могли бы индицировать облако в тот же момент времени, по этим данным определяют координаты точек пересечения проекций осей полей зрения приборов, спроецированных на топографическую карту, и находят уравнения, описывающие изменение с течением времени координат облака, которые дают возможность прогнозировать направление и динамику его распространения, последовательность найденных координат во времени аппроксимируют линией, являющейся искомой траекторией распространения индицируемого облака зараженного воздуха.

Документы, цитированные в отчете о поиске Патент 2018 года RU2642528C2

СПЕКТРОРАДИОМЕТРИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЛАКОВ ТОКСИЧНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ 2011
  • Бойко Андрей Юрьевич
  • Садовников Роман Николаевич
  • Шлыгин Петр Евгеньевич
  • Самородов Александр Сергеевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2478995C1
Способ контроля за выбросами загрязняющих веществ в атмосферу 1991
  • Иванов Владислав Николаевич
  • Орданович Александр Евгеньевич
SU1817859A3
С.В
Башкин и др
Результаты экспериментальных исследований панорамного инфракрасного Фурье-спектрорадиометра / Вестник МГТУ им
Н.Э
Баумана
Серия "Естественные науки", 2016, N2(65), с
Способ запрессовки не выдержавших гидравлической пробы отливок 1923
  • Лучинский Д.Д.
SU51A1

RU 2 642 528 C2

Авторы

Бойко Андрей Юрьевич

Садовников Роман Николаевич

Самородов Александр Сергеевич

Шлыгин Петр Евгеньевич

Позвонков Андрей Александрович

Еремин Валерий Дмитриевич

Даты

2018-01-25Публикация

2016-06-16Подача