Аэростатный способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров Российский патент 2019 года по МПК G01N1/22 G01N21/3504 

Описание патента на изобретение RU2691668C1

Изобретение относится к области испытания оптической аппаратуры, а именно к разработке способов моделирования спектрального состава излучения облаков зараженного воздуха в приземном слое атмосферы как тестовых объектов индикации, и может быть использовано для экспериментальной оценки технических характеристик Фурье-спектрорадиометров в натурных условиях.

Фурье-спектрорадиометры предназначены для поиска, обнаружения и идентификации загрязняющих веществ в атмосфере в режиме реального времени. Особенностью работы Фурье-спектрорадиометров является то, что обнаружение и идентификация облаков токсичных заражающих воздух веществ осуществляется по результатам регистрации спектров поглощения или собственного излучения оптического диапазона электромагнитного излучения.

Создание модельных облаков зараженного воздуха, обладающих заданным спектральным составом собственного оптического излучения, необходимо для использования их в качестве тест-объектов при определении значений параметров обнаружительных характеристик Фурье-спектрорадиометров в целях оценки уровня технических характеристик (или диагностирования их технического состояния) в полевых (натурных) условиях.

Известно, что спектральный состав излучения облака зараженного воздуха определяется его химическим составом. В литературе имеются сведения об искусственно создаваемых облаках паров-имитаторов, в качестве которых использовались пары этилового спирта и аммиака, которые создавались путем распыления с использованием ручной форсунки. [1. Морозов А.Н. Основы

фурье-спектрорадиометрии / А.Н. Морозов, С.И. Светличный; [отв. ред. Г.К. Васильев]. - 2-е изд. испр. и доп.- М.: Наука, 2014].

Известен способ создания искусственных облаков в верхних слоях атмосферы, основанный на выбросе реагента в виде мелких капель в окружающую среду и устройство для его осуществления, содержащее корпус, разделенный поршнем на две полости, - для газа и для жидкого реагента, а также выпускные отверстия и заправочный штуцер [2. Степанов А.В., Трофимов Л.Е. Особенности разработки контейнеров с жидкими реагентами для создания искусственных светящихся облаков в верхней атмосфере. - Труды ИЭМ, вып. 5(2) - М.: Гидрометеоиздат, 1976, с. 146.].

Также известен способ создания искусственных облаков и устройство для его осуществления в верхних слоях атмосферы путем нагревания жидкого реагента в замкнутом объеме до температуры кипения, переводе его в насыщенный пар и выброса с борта летательного аппарата в окружающую среду [3. Патент РФ на изобретение №1007062 А, 3(51) G01W 1/08, 23.03.1983. Бюл. №11].

Кроме вышеуказанных описывается способ создания искусственного облака в верхней атмосфере Земли и устройство для его осуществления, включающий доставку летательным аппаратом на заданную высоту емкости с жидким или пастообразным реагентом и распыление реагента путем управляемого подрыва зарядов пиротехнических или взрывчатых веществ или использования аккумуляторов высокого давления. [4. Патент РФ на изобретение №2007070, МПК A01G 15/00, 15.02.1994].

Недостатком вышеприведенных способов является то, что пространственно-временная изменчивость траектории движения и формы облаков зараженного воздуха зависят от метеорологических условий, характеристик подстилающей поверхности (динамическая и термическая неоднородности), типа источника (точечный или линейный) и физико-химических процессов при образовании облака. Метеорологические условия ограничивают время существования данных облаков, тем самым вынуждая многократно повторно производить процесс их воссоздания. Наряду с этими обстоятельствами, не-

возможно также воспроизвести облака с заданными одинаковыми, стабильными во времени и пространстве макро- и микроструктурными параметрами, что, как следствие, приводит к нестабильности их спектральных характеристик. Кроме того, обеспечение воспроизводимости при помощи различных диспергирующих и распыляющих устройств требует немалых финансовых и временных ресурсов и является само по себе сложной технической задачей.

Существует способ моделирования облаков зараженного воздуха на лабораторном стенде для создания и контроля концентраций газообразных веществ при формировании базы спектральных данных и оценке технических характеристик фурье-спектрорадиометров [5. Патент РФ на полезную модель №103400, МПК G01N 21/00, 10.04.2011, 6. Патент РФ на изобретение №2502967, МПК G01W 1/00, 27.12.2013]. Данный способ позволяет в лабораторных условиях внутри замкнутого объема статической газовой камеры моделировать облако зараженного воздуха с постоянными параметрами концентрации и объема и, следовательно, стабильными спектральными характеристиками. Однако, недостатком такого способа является то, что камера представляет собой стационарный объект, изготовленный из непрозрачного для оптического излучения материала, имеет лишь одно оптическое окно для измерения параметров внутренней среды камеры с помощью Фурье-спектрорадиометра, и следовательно, не может применяться при трассовых дистанционных измерениях в естественных условиях открытой атмосферы. Поэтому указанный способ моделирования облаков зараженного воздуха не находит применения для измерения значений параметров таких важнейших технических характеристик Фурье-спектрорадиометров, как дальность и среднее время обнаружения минимальных количеств загрязняющих веществ, предполагающих при их оценках производить многократные измерения на различных расстояниях от прибора до объекта индикации.

Таким образом, можно отметить, что в настоящее время отсутствует способ моделирования в натурных условиях облаков зараженного воздуха с заданным спектральным составом оптического излучения и фиксированным

во времени значением оптической плотности, без применения специальных распыляющих и диспергирующих технических устройств, позволяющий многократно воспроизводить объект индикации без дополнительного расхода токсикантов или их имитаторов в целях технического диагностирования Фурье-спектрорадиометров и оценки уровня их технических характеристик (диагностированию их технического состояния), а так же обучения специалистов навыкам работы на приборах этого типа.

Целью изобретения является разработка способа моделирования облаков зараженного воздуха с квазистационарными (постоянными) параметрами заданного спектрального состава оптического излучения, геометрических размеров и концентрации для многократного использования при проведении натурных экспериментов по техническому диагностированию Фурье-спектрорадиометров, а так же при обучении специалистов навыкам работы на приборах этого типа.

Данная цель достигается применением газонаполненной закрытой аэростатной оболочки, как компактного герметичного объема, предотвращающего свободное распространение газа-наполнителя в турбулентной атмосфере приземного слоя и обеспечивающего тем самым длительное поддержание заданных концентраций газа-наполнителя внутри оболочки и, как следствие, постоянство спектральных характеристик и геометрических размеров моделируемого тестового объекта.

Новизна предлагаемого технического решения заключается в использовании постоянства оптических свойств газонаполненной закрытой аэростатной оболочки для формирования заданного спектрального состава оптического излучения моделируемого тестового объекта индикации при одновременном исключении воздействия негативных факторов турбулентной приземной атмосферы на изменение геометрических параметров моделируемого объекта индикации.

Для осуществления изобретения применяют оболочки привязных аэростатов двух типов, которые при размещении в поле зрения Фурье-

спектрорадиометра на заданных дистанциях и высотах по трассе дистанционного зондирования, изменяют спектр фонового теплового излучения в рабочем спектральном диапазоне диагностируемого Фурье-спектрарадиометра. Первый тип оболочек - изготовленные из оптически прозрачных в рабочем спектральном диапазоне диагностируемого прибора пленочных полимерных материалов. Второй тип оболочек - имеющие оптические спектральные особенности тождественные целевым токсикантам в облаках зараженного воздуха. Схема применения оболочек для моделирования спектральных характеристик оптического излучения облаков зараженного воздуха при техническом диагностировании фурье-спектрорадиометров представлена на фигуре 1.

В первом случае может использоваться полиэтиленовая оболочка аэростата, в которую вместе с несущим газом, обеспечивающим необходимую плавучесть аэростата, нагнетается необходимое количество газообразного токсиканта (имитатора) с требуемыми спектральными характеристиками, например оболочка аэростата 4ПА-0300.

Во втором случае может использоваться оболочка из цис-1,4-полиизопрена, например радиозондовая оболочка №100, наполняется только несущим газом и используется без наполнения токсикантами, поскольку сама моделирует необходимые спектральные особенности целевых токсикантов [7. Патент РФ на изобретение №2608629, МПК GO1N 21/35, 23.01.2017].

В качестве возможного материала, для создания оболочек аэростатов, в которой будут находиться пары токсикантов или имитаторов, были исследованы пленки различных полимерных материалов: лавсан, полистирол, фторопласт и полиэтилен. Оценивались коэффициенты светопропускания (светопо-глощения) данных материалов в среднем инфракрасном диапазоне, в области 1250-714 см-1, используемом фурье-спектрорадиометрами при своей работе, и соответствующей окну прозрачности атмосферы. Проведены периодические измерения концентрации паров токсикантов (аммиака), созданных в замкнутом объеме 6 м3 полиэтиленовой камеры толщиной 60 мкм (оболочка аэростата 4ПА-0300).

Инфракрасные спектры пропускания исследованных полимерных пленочных материалов представлены на фигуре 2.

График изменения концентрации паров аммиака в полиэтиленовой оболочке аэростата представлен на фигуре 3.

Инфракрасный спектр пропускания цис-1,4-полиизопрена представлен на фигуре 4.

Из представленных данных на спектрах и графиках следует, что по совокупности оцениваемых параметров полиэтилен имеет наименьший коэффициент светопоглощения в инфракрасном диапазоне в границах 1250-714 см-1, и поэтому наиболее пригоден для изготовления оптически прозрачных в данном диапазоне замкнутых оболочек, реализуемых в предложенном способе моделирования облаков зараженного воздуха при его индикации и регистации фурье-спектрорадиометрами. Кроме того, полученные постоянные значения периодических измерений показателей концентрации паров токсикантов внутри замкнутой оболочки из полиэтилена, позволяют проводить многократные повторные натурные (трассовые) эксперименты с последующей возможностью метрологической аттестации указанного оборудования для проведения измерений и более точной оценки технических характеристик по назначению фурье-спектрорадиометров при различных метеоусловиях.

Оболочки из полиэтилена и цис-1,4-полиизопрена являются доступным и удобным в эксплуатации материалом, который широко применяется в качестве специальных изделий в воздухоплавании, метеорологии, а также в качестве изолирующего и упаковочного материала в различных отраслях промышленности и техники [8. Полиэтилен низкого давления: Научно-технические основы промышленного синтеза [Текст] / Л.: Химия, 1980, 9. Еркова Л.Н., Чечик О.С. Латексы [Текст]/Л.: Химия, 1983].

Оптическая плотность газонаполненных закрытых аэростатных оболочек контролируется перед проведением диагностирования тестируемого Фурье-спектрорадиометра при помощи образцового спектрального прибора.

Величина оптической плотности в области характеристических спектральных

полос модельного объекта индикации варьируется с учетом заданной дистанции обнаружения в пределах от минимально достаточной для обнаружения тестового объекта и идентификации регистрируемого характерного спектра его оптического излучения до максимальной обеспечивающей достоверное распознавание тестового объекта по базе данных диагностируемого прибора, но не вызывающей концентрационное искажение формы его спектральных линий. Тем самым обеспечивается наиболее широкий диапазон доступных при диагностировании Фурье-спектрорадиометров дальностей до объекта индикации в натурных условиях.

Похожие патенты RU2691668C1

название год авторы номер документа
СПЕКТРОРАДИОМЕТРИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЛАКОВ ТОКСИЧНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ 2011
  • Бойко Андрей Юрьевич
  • Садовников Роман Николаевич
  • Шлыгин Петр Евгеньевич
  • Самородов Александр Сергеевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2478995C1
Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната 2015
  • Ефимов Игорь Николаевич
  • Бархатов Дмитрий Анатольевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Еремин Валерий Дмитриевич
RU2608629C1
СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ 2011
  • Бойко Андрей Юрьевич
  • Ефимов Игорь Николаевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Самородов Александр Сергеевич
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2502967C2
Спектрорадиометрический способ определения траектории распространения облаков токсичных газообразных веществ в атмосфере 2016
  • Бойко Андрей Юрьевич
  • Садовников Роман Николаевич
  • Самородов Александр Сергеевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Еремин Валерий Дмитриевич
RU2642528C2
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ 2011
  • Васюкевич Игорь Геннадьевич
  • Бобров Руслан Сергеевич
  • Карташов Александр Константинович
  • Климов Сергей Николаевич
  • Мацюк Григорий Владимирович
RU2474811C1
Способ определения возможности применения спектрорадиометра для экологического мониторинга атмосферы 2016
  • Садовников Роман Николаевич
  • Кудымова Ирина Владимировна
  • Бойко Андрей Юрьевич
  • Шлыгин Петр Евгеньевич
  • Садовникова Светлана Викторовна
RU2649094C1
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ РАЗМЕРОВ ТОНКОДИСПЕРСНЫХ АЭРОЗОЛЕЙ СТОЙКИХ ТОКСИЧНЫХ ХИМИКАТОВ ПРИ ВОЗНИКНОВЕНИИ ЗАПРОЕКТНЫХ АВАРИЙ НА ХИМИЧЕСКИ ОПАСНЫХ ОБЪЕКТАХ 2014
  • Бойко Андрей Юрьевич
  • Ефимов Игорь Николаевич
  • Григорьев Александр Александрович
  • Шлыгин Петр Евгеньевич
  • Игольницын Руслан Валентинович
  • Позвонков Андрей Александрович
  • Еремин Валерий Дмитриевич
RU2578105C1
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ТОНКОДИСПЕРСНЫХ АЭРОЗОЛЕЙ ТОКСИЧНЫХ ВЕЩЕСТВ В МЕСТАХ ИХ ХРАНЕНИЯ И УНИЧТОЖЕНИЯ ПРИ ВОЗНИКНОВЕНИИ НЕШТАТНЫХ СИТУАЦИЙ С ПОМОЩЬЮ ПАССИВНЫХ ИНФРАКРАСНЫХ СПЕКТРОМЕТРОВ 2010
  • Васюкевич Игорь Геннадьевич
  • Мацюк Григорий Владимирович
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Петухов Алексей Николаевич
  • Романюта Денис Сергеевич
RU2441220C2
Способ дистанционного контроля степени зараженности подстилающей поверхности аэрозолями стойких токсичных химических веществ 2018
  • Бойко Андрей Юрьевич
  • Иноземцев Валерий Александрович
  • Григорьев Александр Александрович
  • Ефимов Игорь Николаевич
  • Еремин Валерий Дмитриевич
  • Позвонков Андрей Александрович
  • Шлыгин Петр Евгеньевич
RU2691667C1
Аэростатная система наблюдения 2021
  • Бердников Александр Юрьевич
  • Куканков Сергей Николаевич
RU2761326C1

Иллюстрации к изобретению RU 2 691 668 C1

Реферат патента 2019 года Аэростатный способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров

Изобретение относится к области испытания оптической аппаратуры и предназначено для экспериментальной оценки технических характеристик Фурье-спектрорадиометров в полевых условиях. Технический эффект, заключающийся в возможности проведения экспериментов по оценке уровня технических характеристик Фурье-спектрорадиометров или диагностированию их технического состояния без ограничения временных параметров, зависящих от метеорологических условий и законов распространения паров токсикантов в турбулентной атмосфере, в обеспечении постоянства спектральных характеристик моделируемого облака заражённого воздуха, а также в расширении диапазона доступных дальностей до тестового объекта индикации, достигается за счёт того, что применяется газонаполненная закрытая оболочка как компактный герметичный объём, которая предотвращает свободное распространение газа-наполнителя в турбулентной атмосфере приземного слоя, при этом используется постоянство оптических свойств газонаполненной закрытой аэростатической оболочки для формирования заданного спектрального состава оптического излучения моделируемого тестового объекта индикации при одновременном исключении воздействия негативных факторов турбулентной приземной атмосферы на изменение геометрических параметров моделируемого объекта индикации. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 691 668 C1

1. Способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров в натурных условиях, заключающийся в создании в поле зрения прибора тестового объекта, который обладает тождественным спектру подлежащего идентификации вещества спектром поглощения оптического излучения и изменяет спектр фонового теплового излучения в рабочем спектральном диапазоне диагностируемого Фурье-спектрорадиометра, отличающийся тем, что в поле зрения Фурье-спектрорадиометра на заданных дистанциях и высотах по трассе дистанционного зондирования в качестве тестового объекта помещают газонаполненную закрытую аэростатную оболочку, обладающую оптической плотностью с фиксированным во времени значением и заданным спектральным составом, величина которой предварительно измеряется при помощи образцового спектрального прибора и должна быть достаточной для регистрации характерного спектра оптического излучения Фурье-спектрорадиометром, но не превышать величины, обеспечивающей достоверное распознавание тестового объекта по базе данных диагностируемого прибора, и не вызывает концентрационное искажение формы его спектральных линий, представляющую собой компактный герметичный объем, предотвращающий свободное распространение газа-наполнителя в турбулентной атмосфере приземного слоя и обеспечивающий тем самым длительное поддержание заданных концентрации газа-наполнителя внутри оболочки и ее размеров и, как следствие, постоянство спектральных характеристик тестового объекта.

2. Способ по п. 1, отличающийся тем, что для осуществления изобретения применяют газонаполненную закрытую аэростатную оболочку, изготовленную из оптически прозрачных в рабочем спектральном диапазоне диагностируемого прибора пленочных полимерных материалов, в которую вместе с несущим газом, обеспечивающим необходимую плавучесть аэростата, нагнетается необходимое количество токсиканта или имитатора с требуемыми спектральными характеристиками.

3. Способ по п. 1, отличающийся тем, что для осуществления изобретения применяют газонаполненную закрытую аэростатную оболочку, изготовленную из пленочных полимерных материалов, которые непосредственно сами имеют оптические спектральные особенности тождественные в рабочем спектральном диапазоне диагностируемого прибора целевым токсикантам в облаках зараженного воздуха.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691668C1

WO 2006137913 A2, 28.12.2006
СПОСОБ СОЗДАНИЯ ИСКУССТВЕННОГО ОБЛАКА В ВЕРХНЕЙ АТМОСФЕРЕ ЗЕМЛИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Гарбузенко В.Ф.
  • Клюев О.Ф.
  • Матухин П.Г.
  • Портнягин Ю.И.
  • Соколов В.В.
  • Шамшев К.Н.
  • Шидловский А.А.
RU2007070C1
Способ получения биологического материала для восстановительной хирургии 1952
  • Кузнецов Н.Н.
SU103400A1
СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ 2011
  • Бойко Андрей Юрьевич
  • Ефимов Игорь Николаевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Тюрин Дмитрий Владимирович
  • Самородов Александр Сергеевич
  • Морозов Андрей Николаевич
  • Табалин Сергей Егорович
  • Фуфурин Игорь Леонидович
RU2502967C2
Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната 2015
  • Ефимов Игорь Николаевич
  • Бархатов Дмитрий Анатольевич
  • Шлыгин Петр Евгеньевич
  • Позвонков Андрей Александрович
  • Еремин Валерий Дмитриевич
RU2608629C1

RU 2 691 668 C1

Авторы

Бойко Андрей Юрьевич

Садовников Роман Николаевич

Ефимов Игорь Николаевич

Шлыгин Петр Евгеньевич

Позвонков Андрей Александрович

Бархатов Дмитрий Анатольевич

Даты

2019-06-17Публикация

2018-05-29Подача