СИСТЕМА ПРОВЕТРИВАНИЯ УКЛОННОГО БЛОКА НЕФТЕШАХТЫ Российский патент 2018 года по МПК E21F1/00 

Описание патента на изобретение RU2642893C9

Изобретение относится к горной промышленности и может быть использовано для экономичного проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, подземная добыча которых производится шахтным способом с тепловыми методами воздействия на пласт (термошахтный способ).

В нефтешахтах применяется термошахтный способ добычи высоковязкой нефти, при котором в нефтяной пласт закачивается перегретый пар. В результате этого вязкость нефти снижается и нефть выдается из добывающих скважин, расположенных в буровой галерее уклонного блока. Проблема заключается в том, что от стен буровой галереи излучается тепло (температура воздуха в буровой галерее может достигать 70°C). Нагретый воздух выдается в исходящие выработки нефтешахты. Вследствие этого в данных выработках нарушаются санитарно-гигиенические условия труда горнорабочих.

В случае, если охлаждать воздух, поступающий в буровую галерею, температура воздуха в ней будет снижаться, что приведет к снижению температуры пласта и соответственно к снижению эффективности нагрева нефти и перерасходу пара, т.е. к увеличению энергопотерь на разогрев продуктивного нефтяного пласта. При этом охлаждение воздуха, исходящего из буровой галереи, будет нецелесообразным с экономической точки зрения.

Известна система проветривания уклонного блока нефтешахты, в которой воздух, поступающий в уклонный блок и нагретый в буровой галерее, удаляется по вентиляционной скважине на поверхность за счет действия естественной тяги (тепловой депрессии) и работы вентилятора (дефлектора). Прохождению нагретого воздуха в исходящие выработки препятствует воздушный тамбур с перемычками (Николаев А.В., Файнбург Г.З. Об энерго- и ресурсосберегающем проветривании подземных горных выработок нефтешахт // Вестник ПНИПУ. Геология. Нефтегазовое и горное дело. 2015. №14. С. 92-98 http://vestnik.pstu.ru/qeo/archives/?id=&folder_id=4397).

Недостаток известной системы заключается в том, что вследствие установки воздушного тамбура с перемычками исходящие выработки не проветриваются, в результате чего создается опасная ситуация для находящихся там горнорабочих.

Наиболее близким по технической сущности к заявляемому способу является система проветривания нефтешахты (RU №2582145, опубл. 20.04.2016 г.), в которой одна часть воздушного потока, поступающего в уклонный блок, поступает в буровую галерею и потом удаляется по вентиляционной скважине на поверхность, а другая часть воздушного потока за счет работы вентилятора местного проветривания поступает в исходящие выработки нефтешахты.

Однако для проветривания уклонного блока требуется определенный объем воздуха, который в дальнейшем будет поступать в исходящие выработки. В известной системе объем воздуха, необходимый для проветривания, увеличивается в 2 раза, т.к. поступающий в буровую галерею воздух удаляется по вентиляционной скважине на поверхность. В том же объеме необходимо подавать его и в исходящие выработки. В этом случае в 2 раза увеличиваются затраты электроэнергии, расходуемой на проветривание уклонного блока и нефтешахты в целом.

Основной недостаток системы-прототипа заключается в том, что поступающий воздух, имеющий температуру, равную температуре горных пород (7-10°C), попадая в буровую галерею, будет охлаждать стенки горного массива буровой галереи. Это приведет к увеличению объема пара, требуемого для разогрева продуктивного нефтяного пласта, что увеличит энергопотери при его подготовке. Кроме того, на проветривание уклонного блока потребуется в 2 раза большее количество свежего воздуха, т.е. увеличатся энергозатраты на проветривание уклонного блока нефтешахты в целом.

Технический результат выражается в снижении энергозатрат на проветривание уклонного блока нефтешахты за счет снижения энергопотерь на разогрев продуктивного нефтяного пласта.

Сущность изобретения заключается в том, что система проветривания уклонного блока нефтешахты, включающая датчики расхода воздуха и температуры, связанные с микропроцессорным блоком, воздухоподающую и воздуховыдающую выработки с воздушными тамбурами, а также источник перегретого пара, согласно изобретению снабжена тепловым насосом, включающим змеевик-конденсатор, расположенный в канале конденсатора воздухоподающей выработки, также змеевик-испаритель, размещенный в канале испарителя воздуховыдающей выработки. Указанные змеевики соединены с компрессором, перекачивающим теплоноситель, и с управляемым дросселем, а вентиляционные окна обоих каналов снабжены управляемыми жалюзи.

Микропроцессорный блок выполнен с возможностью управления расходом перегретого пара, поступающего в продуктивный нефтяной пласт, режимом работы теплового насоса и объемным расходом воздуха, поступающим в уклонный блок в зависимости от показаний датчика расхода воздуха, размещенного в воздухоподающей выработке по ходу потока воздуха, а также датчиков температуры воздуха, расположенных в воздуховыдающей выработке и буровой галерее.

Заявляемая система проветривания уклонного блока нефтешахты обеспечивает снижение энергопотерь на разогрев продуктивного нефтяного пласта за счет того, что поступающий в канал конденсатора воздух, имеющий температуру 7-10°C, нагревается при протекании через змеевик-конденсатор, охлаждая в нем теплоноситель. За счет того, что в буровую галерею поступает нагретый воздух, степень охлаждения стенок продуктивного пласта будет снижаться, и для его нагрева, т.е. для подготовки нефти, содержащейся в пласте, потребуются меньшие энергозатраты.

Исходящий из буровой галереи нагретый воздух поступает в канал испарителя, где проходит через змеевик-испаритель. В змеевике-испарителе циркулирует теплоноситель, охлажденный в змеевике-конденсаторе. Исходящий из канала испарителя воздух охлаждается и подается в исходящие горные выработки.

При этом на нагрев пласта потребуется меньшее количество перегретого пара, а за счет того, что воздух, поступающий из буровой галереи, будет охлаждаться, не потребуется установка высокозатратной системы кондиционирования и/или дополнительного объема воздуха, т.е. увеличения энергозатрат на проветривание.

Микропроцессорный блок по показаниям датчиков осуществляет регулирование процесса подачи перегретого пара, режимом теплового насоса и расходом воздуха, подаваемого для проветривания уклонного блока нефтешахты.

Изобретение проиллюстрировано следующими чертежами.

На фиг. 1 показана схема уклонного блока нефтешахты с заявляемой системой проветривания, вид сверху, на фиг. 2 - канал конденсатора теплового насоса, на фиг. 3 - канал испарителя теплового насоса, фиг.4 - схема работы микропроцессорного блока.

1 - свежий воздух;

2 - воздухоподающая выработка уклонного блока;

3 - воздушный тамбур в воздухоподающей выработке 2;

4 - перемычка воздушного тамбура 3, расположенная со стороны набегающего потока воздуха;

5 - перемычка воздушного тамбура 3, расположенная со стороны исходящей струи воздуха;

6 - двери в перемычках 4, 5;

7 - канал конденсатора теплового насоса;

8 - вентиляционное окно;

9 - змеевик-конденсатор теплового насоса;

10 - нагретый воздух;

11 - буровая галерея;

12 - датчик температуры воздуха в буровой галерее 11;

13 - датчик расхода воздуха;

14 - воздуховыдающая выработка уклонного блока;

15 - воздушный тамбур в воздуховыдающей выработке 2;

16 - канал испарителя теплового насоса;

17 - змеевик-испаритель теплового насоса;

18 - регулируемый дроссель;

19 - трубопровод с теплоносителем;

20 - соединительная выработка;

21 - охлажденный воздух;

22 - датчик температуры воздуха в воздуховыдающей выработке 14;

23 - компрессор теплового насоса;

24 - глухая перемычка с дверьми;

25 - перегретый пар;

26 - исполнительное устройство подачи перегретого пара 25;

27 - управляемые жалюзи;

28 - микропроцессорный блок;

29 - регулируемая вентиляторная установка.

Процесс проветривания уклонного блока нефтешахты с помощью заявляемой системы осуществляется следующим образом.

Свежий воздух 1, нагнетаемый регулируемой вентиляторной установкой 29, по воздухоподающей выработке 2 поступает в уклонный блок. Воздухоподающая выработка 2 по ходу движения свежего воздуха 1 делится на два параллельных участка: воздушный тамбур 3, включающий перемычки 4 и 5 с дверьми 6, и канал конденсатора теплового насоса 7.

Воздушный тамбур 3 предназначен для прохода горнорабочих по воздухоподающей выработке 2. Перемычка 4 воздушного тамбура 3 расположена под тупым углом, при котором снижается аэродинамическое сопротивление набегающему потоку свежего воздуха 1, который направляется в канал конденсатора 7. Воздух 1 из конденсатора теплового насоса 7 поступает через вентиляционные окна 8 с регулируемыми жалюзи 27. В канале 7 расположен змеевик-конденсатор 9, в котором циркулирует теплоноситель, например этиленгликоль.

Поступающий в канал 7 свежий воздух 1, проходя через змеевик-конденсатор 9, нагревается сам до близкой к температуре воздуха в буровой галерее 11 и охлаждает циркулирующий в змеевике теплоноситель.

При температуре воздуха в буровой галерее 11, равной 70°C, поступающего воздуха 1 по воздухоподающей выработке 2 в требуемом для нормального режима проветривания уклонного блока - 7-11°C, теплоноситель охладится до отрицательных температур, порядка -7÷-9°C.

Нагретый в канале 7 воздух 10 поступает в буровую галерею 11. Нефтяной пласт в буровой галерее 11 принудительно нагревается перегретым паром 25 для снижения вязкости нефти. В процессе омывания нефтяного пласта буровой галереи 11 нагретым воздухом 10 количество требуемого перегретого пара 25 потребуется меньше.

Изменение температуры воздуха в буровой галереи 11 контролирует датчик температуры 12. Информация с датчика температуры 12 поступает в микроконтроллерный блок 28. Блок 28 вычисляет значение требуемой температуры воздуха в буровой галерее 11 в зависимости от расхода подаваемого воздуха в нефтяной пласт буровой галереи 11 пара и скорости движения воздуха в нем, определяемой датчиком расхода воздуха 13 в воздуховыводящей выработке 14. Информация с датчика расхода воздуха 13 поступает в микропроцессорный блок 28.

Нагретый воздух 10 поступает в воздуховыдающую выработку 14, которая по ходу движения воздуха 10 разделена на два параллельных участка: воздушный тамбур 15 и канал испарителя теплового насоса 16. В канале 16 расположен змеевик-испаритель теплового насоса 17, в который через регулируемый дроссель 18 подается охлажденный теплоноситель.

Теплоноситель передается в змеевик-испаритель 17 от змеевика-конденсатора 9 по трубопроводу 19. Проходя через змеевик-испаритель теплового насоса 17, нагретый воздух 10 охлаждается, нагревая теплоноситель в нем. Теплоноситель, нагретый в змеевике-испарителе 17, передается в змеевик-конденсатор 9 за счет работы компрессора 23 теплового насоса, на выходе которого теплоноситель нагревается до большего значения.

Охлажденный воздух 21 поступает в воздуховыдающую выработку 14 и далее в выработки нефтешахты. Температура охлажденного воздуха 21 определяется датчиком температуры 22.

В зависимости от температуры исходящего из уклонного блока, нагретого в буровой галерее 11 и канале 7 воздуха 21, исполнительным устройством 26 регулируется расход перегретого пара, подаваемого в пласт буровой галереи 11, регулируемыми жалюзи 27, т.е. режим работы компрессора 23 и дросселя 18.

Регулируемая вентиляторная установка 29 задает объем подаваемого воздуха 1.

Компрессор 23 и дроссель 18 могут располагаться в соединительной выработке 20.

Расход воздуха контролируется за счет управления жалюзи 27 в вентиляционных окнах 8.

В соединительной выработке 20 установлены две глухие перемычки с дверьми 24 с целью предотвращения утечек воздуха из воздухоподающей выработки 2 в воздуховыдающую выработку 14.

Похожие патенты RU2642893C9

название год авторы номер документа
СИСТЕМА ПРОВЕТРИВАНИЯ УКЛОННОГО БЛОКА НЕФТЕШАХТЫ 2017
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Николаев Виктор Александрович
  • Рыбин Александр Аркадьевич
  • Закиров Данир Галимзянович
RU2648790C1
СИСТЕМА ПРОВЕТРИВАНИЯ УКЛОННОГО БЛОКА НЕФТЕШАХТЫ 2017
  • Николаев Александр Викторович
  • Николаев Виктор Александрович
  • Алыменко Николай Иванович
RU2652769C1
СИСТЕМА ПРОВЕТРИВАНИЯ УКЛОННОГО БЛОКА НЕФТЕШАХТЫ 2016
  • Николаев Александр Викторович
  • Николаев Виктор Александрович
  • Алыменко Николай Иванович
  • Вавулин Антон Валерьевич
RU2645690C1
СИСТЕМА ПРОВЕТРИВАНИЯ НЕФТЕШАХТЫ 2015
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Файнбург Григорий Захарович
  • Николаев Виктор Александрович
RU2582145C1
УСТРОЙСТВО ДЛЯ ПРИНУДИТЕЛЬНОГО ПРОВЕТРИВАНИЯ РАБОЧИХ МЕСТ 2023
  • Гендлер Семён Григорьевич
  • Фазылов Ильдар Робертович
  • Виленская Анастасия Викторовна
RU2816134C1
ТЕРМОШАХТНЫЙ СПОСОБ РАЗРАБОТКИ ВЫСОКОВЯЗКОЙ НЕФТИ 2016
  • Седнев Данил Юрьевич
  • Кривощеков Сергей Николаевич
RU2616022C1
Способ эксплуатации добывающих галерей уклонных блоков при термошахтной разработке нефтяных месторождений 2015
  • Перевощиков Вадим Георгиевич
  • Герасимов Игорь Витальевич
  • Коноплев Юрий Петрович
RU2624838C1
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ 2014
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Седунин Алексей Михайлович
  • Николаев Виктор Александрович
RU2574098C2
ТЕРМОШАХТНЫЙ СПОСОБ РАЗРАБОТКИ ВЫСОКОВЯЗКОЙ НЕФТИ 2014
  • Седнев Данил Юрьевич
  • Седунин Алексей Михайлович
RU2560457C1
СПОСОБ ПРОВЕТРИВАНИЯ ПОДЗЕМНОГО ГОРНОДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ 2015
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Николаев Виктор Александрович
  • Каменских Антон Алексеевич
RU2601342C1

Иллюстрации к изобретению RU 2 642 893 C9

Реферат патента 2018 года СИСТЕМА ПРОВЕТРИВАНИЯ УКЛОННОГО БЛОКА НЕФТЕШАХТЫ

Изобретение относится к горной промышленности и может быть использовано для экономичного проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, разрабатываемых термошахтным способом. Технический результат заключается в снижении энергозатрат на проветривание уклонного блока нефтешахты за счет снижения энергопотерь на разогрев продуктивного нефтяного пласта. Система проветривания уклонного блока нефтешахты, включающая датчики расхода воздуха и температуры, связанные с микропроцессорным блоком, воздухоподающую и воздуховыдающую выработки с воздушными тамбурами, а также источник перегретого пара, снабжена тепловым насосом, включающим змеевик-конденсатор, расположенный в канале конденсатора воздухоподающей выработки, также змеевик-испаритель, размещенный в канале испарителя воздуховыдающей выработки. Указанные змеевики соединены с компрессором, перекачивающим теплоноситель, и с управляемым дросселем, а вентиляционные окна обоих каналов снабжены управляемыми жалюзи. Микропроцессорный блок выполнен с возможностью управления расходом перегретого пара, поступающего в продуктивный нефтяной пласт, режимом работы теплового насоса и объемным расходом воздуха, поступающим в уклонный блок в зависимости от показаний датчика расхода воздуха, размещенного в воздухоподающей выработке по ходу потока воздуха, а также датчиков температуры воздуха, расположенных в воздуховыдающей выработке и буровой галерее. 4 ил.

Формула изобретения RU 2 642 893 C9

Система проветривания уклонного блока нефтешахты, включающая датчики расхода воздуха и температуры, связанные с микропроцессорным блоком, воздухоподающую и воздуховыдающую выработки с воздушными тамбурами, а также источник перегретого пара,

отличающаяся тем, что

она снабжена тепловым насосом, включающим змеевик-конденсатор, расположенный в канале конденсатора воздухоподающей выработки, также змеевик-испаритель, размещенный в канале испарителя воздуховыдающей выработки, указанные змеевики соединены с компрессором, перекачивающим теплоноситель, и с управляемым дросселем, а вентиляционные окна обоих каналов снабжены управляемыми жалюзи, причем микропроцессорный блок выполнен с возможностью управления расходом перегретого пара, поступающего в продуктивный нефтяной пласт, режимом работы теплового насоса и объемным расходом воздуха, поступающим в уклонный блок в зависимости от показаний датчика расхода воздуха, размещенного в воздухоподающей выработке по ходу потока воздуха, а также датчиков температуры воздуха, расположенных в воздуховыдающей выработке и буровой галерее.

Документы, цитированные в отчете о поиске Патент 2018 года RU2642893C9

НИКОЛАЕВ А
В
и др
Об энерго- и ресурсосберегающем проветривании подземных горных выработок нефтешахт
Вестник ПНИПУ
Геология
Нефтегазовое и горное дело, N 14, 2015, стр
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1
Способ вентиляции шахты 1991
  • Андреев Иван Михайлович
  • Батманов Юрий Константинович
  • Карнаух Николай Викторович
  • Лепихов Алексей Герасимович
  • Моисеев Михаил Алексеевич
SU1809103A1
СПОСОБ ОХЛАЖДЕНИЯ И ОСУШЕНИЯ ШАХТНОГО ВОЗДУХА 1996
  • Казаков Б.П.
  • Красноштейн А.Е.
  • Мохирев Н.Н.
  • Южанин С.Н.
RU2117159C1
СИСТЕМА ПРОВЕТРИВАНИЯ НЕФТЕШАХТЫ 2015
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Файнбург Григорий Захарович
  • Николаев Виктор Александрович
RU2582145C1
СИСТЕМА АВТОМАТИЗАЦИИ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ 2014
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Седунин Алексей Михайлович
  • Николаев Виктор Александрович
RU2574098C2
СПОСОБ УПРАВЛЕНИЯ РАБОТОЙ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ ПРИ ПРОВЕТРИВАНИИ ШАХТ 2013
  • Николаев Александр Викторович
  • Алыменко Николай Иванович
  • Лялькина Галина Борисовна
  • Николаев Виктор Александрович
RU2537427C1
US 5269660 A1, 14.12.1993.

RU 2 642 893 C9

Авторы

Николаев Александр Викторович

Закиров Данир Галимзянович

Алыменко Николай Иванович

Николаев Виктор Александрович

Мухамедшин Мансур Альтафович

Даты

2018-01-29Публикация

2016-08-24Подача