Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума.
Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая защита по патенту РФ №2583441 [прототип] как способ акустической защиты оператора, заключающийся в том, что рабочее место оператора оснащают средствами снижения шума.
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента звукопоглощения.
Технический результат - повышение эффективности шумоглушения.
Это достигается тем, что в устройстве акустической защиты оператора, содержащем рабочее место оператора, расположенное между акустическими экранами, и акустический подвесной потолок, в верхней зоне помещения для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании, при этом осуществляют двухкаскадную виброзащиту оператора.
На фиг. 1 изображен общий вид устройства для акустической защиты оператора, на фиг.2 - конструкция пола помещения на упругом основании, на фиг. 3 - амортизирующая конструкция для установки стеновой панели, на фиг. 4 - конструкция стеновой шумопоглощающей панели, установленной на перекрытии, на фиг. 5 - конструкция кулисных звукопоглотителей, на фиг. 6 - график эффективности звукопоглощения применяемых панелей, на фиг. 7, 8 - варианты акустической стеновой панели.
Устройство для акустической защиты оператора (фиг. 1) содержит каркас здания, выполненный в виде упругого основания 1, являющегося полом помещения (фиг. 2), теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3, которые в свою очередь соединены с металлоконструкцией 4, например в виде фермы. Акустический подвесной потолок 5 размещен в зоне ферм 4 и выполнен в виде установленных с определенным шагом кулисных звукопоглотителей, нижняя часть которых выступает за нижнюю часть ферм 4 в сторону основания 1. На ограждениях 2 закреплены акустические стеновые панели 6 на амортизирующей конструкции для установки стеновой панели (фиг. 3). На упругом основании 1 помещения установлено виброакустическое оборудование 7 и 8 с различными спектральными характеристиками уровней звуковой мощности. Рабочее место оператора 15, включающее в себя пульты управления 16 и 17 оборудованием 7 и 8, расположено между акустическими экранами 9 и 11, причем в одном из них, например девятом, выполнен смотровой звукоизолирующий люк 10 для контроля визуализации наблюдения за технологическим процессом. Каркас здания сверху закрыт звукоизолирующим покрытием 12, выполняющим также функцию кровли, в котором расположены вертикальные 13 и наклонные 14 оконные проемы в виде вакуумных звукоизолирующих стеклопакетов.
Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 18, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 19 межэтажного перекрытия с полостями 20 через слои вибродемпфирующего материала 21 и гидроизоляционного материала 22, установленных с зазором относительно несущих стен 23 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 18 по всем направлениям, слои вибродемпфирующего материала 21 и гидроизоляционного материала 22 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 7 и базовой несущей плите 19 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 20 заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом.
Конструкция пола на упругом основании работает следующим образом. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглощающего материала, представляющих собою модель резонаторов ʺГельмгольцаʺ, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор шумопоглощающего материала. Причем иглопробивные маты состоят из волокон, имеющих диаметр не ниже предельно допустимого гигиенического значения, не содержат канцерогенных асбестовых и керамических волокон, а в их состав не входят такие вредные связующие, как фенол. Поэтому с уверенностью их можно отнести к классу тепло-звукоизоляционных материалов, соответствующих высоким гигиеническим и противопожарным требованиям. Добавим, что стекловолокнистые материалы имеют низкую теплопроводность, не поддаются влиянию пара, масла, воды, обладают высокой температурной стабильностью.
Акустические стеновые панели 6 могут быть выполнены в виде плит из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».
Возможен вариант выполнения акустической стеновой панели 6 в виде звукопоглощающей конструкции (фиг. 7), которая выполнена в виде гладкой жесткой стенки 30 и перфорированной стенки 36, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам 30 и 36, являются звукопоглощающими слоями 31 и 35 из материалов разной плотности, а три центральных слоя 32, 33, 34 являются комбинированными, причем осевой слой 33 выполнен звукопоглощающим, а два симметрично расположенных и прилегающих к нему слоя 32 и 34 выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 36 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.
Каждая из стенок 30 и 36 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/ (2,5…3,5).
Каждая из стенок 30 и 36 может быть выполнена из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.
Каждая из стенок 30 и 36 может быть выполнена из твердых декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100, или полимером типа «повиден», или неткаными материалами, например «лутрасилом».
Звукопоглощающая конструкция работает следующим образом.
Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 36 попадает на слой 35 из мягкого звукопоглощающего материала, а затем встречает на своем пути соответственно слои 34, 33 и 32 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, но часть звуковой энергии проходит через слои 32 и 34 из звукоотражающего материала и взаимодействует с осевым слоем 33 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии.
Слои 31 и 35 из мягкого звукопоглощающего материала разной плотности могут быть выполнены, например, из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов ʺТельмгольцаʺ, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.
Устройство для акустической защиты оператора работает следующим образом.
Рабочее место оператора 15 располагают между акустическими экранами 9 и 11 и защищают оператора от прямого звука, который распространяется от виброактивного оборудования 7 и 8. Для того чтобы повысить эффективность защиты от отраженных звуковых волн над рабочей зоной (рабочим местом) устанавливают акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4). Он снижает уровни звуковых волн, исходящих от оборудования 7 и 8 за счет многократного отражения звуковых волн от кулисных звукопоглотителей. Для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
Внутри помещений, где велика площадь открытого кирпича, штукатурки, бетона, кафеля, стекла, металла, всегда слышно долгое эхо. Если в таких помещениях есть несколько источников звука (разговор людей, музыка, производственные шумы), то прямой звук накладывается на его громкие первые отражения, что приводит к неразборчивости речи и повышенному уровню шума в помещении. Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).
С акустической точки зрения звукопоглотители могут быть разделены на следующие группы: пористые (в т.ч. волокнистые); пористые с перфорированными экранами; резонансные; слоистые конструкции; штучные или объемные.
Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п,. с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.
Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например лутрасилом.
В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемые к дизайну помещений.
В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Кроме этого, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.
Напомним, что коэффициент звукопоглощения а равен отношению не отразившейся (поглощенной внутри и прошедшей сквозь) от поверхности энергии колебания воздуха к полной энергии, воздействующей на поверхность. Коэффициенты звукопоглощения большинства строительных материалов см. в таблице 1. Волокнистые и пористые материалы используют в основном для улучшения акустических качеств в кинотеатрах, театрах, концертных залах, студиях, аудиториях. Кроме того, они используются для уменьшения шума в детских садах, школах, больницах, ресторанах, офисах, торговых залах, вестибюлях, залах ожидания, производственных помещениях.
Рабочее место оператора 15 надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка или движущиеся части оборудования.
Звуковая энергия от оборудования 7 и 8, находящегося в помещении, пройдя через перфорированную стенку акустических стеновых панелей 6 попадает на слои звукопоглощающего материала (который может быть как мягким, например из базальтового или стеклянного волокна, так и жестким, например камня-ракушечника). Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов ʺГельмгольцаʺ, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой. При этом акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4), снижает уровни звуковых волн, исходящих от оборудования 7 и 8, а рабочее место оператора 15, расположенное между акустическими экранами 9 и 11, надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка, или движущиеся части оборудования.
На фиг. 4 представлена конструкция стеновой шумопоглощающей панели, установленной на перекрытии, которая состоит из: 24 - звукопоглощающая плита типа шуманет-ЭКО (50 мм); 25 - лист гипсоволокнистый 12,5 мм; 26 - лист гипсокартонный 12,5 мм; 27 - профиль типа Вибронет ПН 100/40; 28 - прокладка типа Вибростек-М (2 слоя); 29 - герметик типа Вибросил.
Звукопоглощающая плита типа ШУМАНЕТ-ЭКО или ШУМАНЕТ-БМ: Звукопоглощающая плита из минеральной ваты. Плиты ШУМАНЕТ-БМ применяются в качестве эффективного среднего слоя в конструкциях звукоизолирующих каркасных перегородок или облицовок из листов ГКЛ/ГВЛ, ДСП, фанеры, а также в системах акустических перфорированных экранов или подвесных потолков. Состав: гидрофобизированная плита из минеральной ваты на основе базальтовых пород. Размеры: Длина плиты: 1000 мм. Ширина плиты: 600 мм. Толщина плиты: 50 мм. Физические характеристики: объемная плотность: 40 кг/м3. Количество плит в упаковке: 4 шт. Количество в упаковке: 2,4 м2. Объем упаковки: 0,12 м3. Вес упаковки: 5,5 кг.
ВИБРОСТЕК -М - это упакованная в рулон лента из звукоизоляционного стеклохолста. Изоляция структурного шума обеспечиваются за счет упругих свойств пористо-волокнистой структуры материала. Это определяет стабильные физико-механические характеристики прокладки под статическими и динамическими нагрузками, а также сохранение заявленных акустических свойств в течение длительного срока эксплуатации.
ВИБРОСТЕК-М применяется в качестве прокладочного материала в строительных конструкциях при монтаже панельной системы, каркасных звукоизоляционных перегородок и облицовок, а также деревянных полов и перекрытий. Состав: многослойный звукоизолирующий стеклохолст LB300 на основе стекловолокна типа «С». Виброакустические характеристики: динамический модуль упругости, ед.: 0,18 МПа при нагрузке 2 кПа, 0,35 МПа при нагрузке 5 кПа. Коэффициент относительного сжатия, ед.: 0,25 при нагрузке 2 кПа, 0,35 при нагрузке 5 кПа.
При монтаже сэндвич-панелей ленточная прокладка ВИБРОСТЕК-М укладывается в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком. При монтаже каркасных перегородок и облицовок материал ВИБРОСТЕК-М, применяется между профилями каркаса (крепежными элементами) и несущими строительными конструкциями. Ленты материала ВИБРОСТЕК-М применяются также в местах примыкания обшивных листов перегородки (облицовки) к другим строительным конструкциям.
Герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик ВИБРОСИЛ предназначен для герметизации стыков и соединений в специальных звукоизолирующих конструкциях. Герметик обеспечивает высокую виброизоляцию стыков между строительными конструкциями. Снижает распространение структурного шума по ним и тем самым повышает их собственную звукоизоляцию. Применяется для заполнения швов в конструкциях звукоизоляционных (плавающих) полов, панельной системы, каркасных звукоизолирующих перегородок и облицовок. Состав: герметик изготовлен на основе силиконовых смол и кремнийсодержащих модифицирующих добавок.
Виброизолирующие стеновые крепления ВИБРОФЛЕКС (фиг. 3) - это амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения. Для монтажа к вертикальным ограждающим конструкциям разработаны стеновые варианты креплений типа ЕР. Область применения: стеновые крепления применяются для устройства звукоизоляционных облицовок стен, виброизоляции трубопроводов инженерных сетей, вентиляционных каналов, подвесного инженерного оборудования и других виброизлучающих агрегатов. Состав: конструкция выполнена на основе уникального материала Sylomer - это микропористый полиуретановый эластомер, специально разработанный для решения задач звуко- и виброизоляции.
Кулисный штучный звукопоглотитель составной (фиг. 5) состоит по крайней мере из двух частей жесткого каркаса, стягиваемого хомутами и подвешиваемого за крючья на направляющих (на чертеже не показано) либо непосредственно крепящегося к потолку производственного здания. Внутри каркаса расположен звукопоглощающий материал, обернутый сетчатой капроновой тканью или стеклотканью. В некоторых случаях поверх стеклоткани 3 к каркасу может быть прикреплен просечно-вытяжной стальной лист (на чертеже не показан). Каркас может быть выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер d×h×b, отношение которых лежит в оптимальном интервале величин d:h:b=2:1:0,5, или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2. Внутри кулис могут быть выполнены полости, не заполненные звукопоглощающим материалом. При всех схемах подвеса должны соблюдаться оптимальные соотношения размеров: m - от точки подвеса каркаса на направляющей до потолка и с - расстояние между осями соседних каркасов, причем отношение этих размеров должно находиться в оптимальном интервале величин: m:с=1:1…0,5:1. Заполнение осуществляют звукопоглощающим негорючим материалом (например, винипором, стекловолокном) с защитным слоем из стеклоткани, предотвращающим выпадение звукопоглотителя.
Кулисный звукопоглотитель работает следующим образом.
Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных полостями. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило большие объемы для подавления шума в низкочастотном диапазоне, а малые в области средних и высоких частот.
Предложенный способ акустической защиты является эффективным способом борьбы с производственными шумами.
Возможен вариант акустической шумопоглощающей панели для облицовки кабины оператора, выполненной в виде звукопоглощающего элемента (фиг. 9).
Звукопоглощающий элемент выполнен в виде внешней 37 и внутренней 38 перфорированных поверхностей, между которыми размещен звукопоглотитель, состоящий из трех слоев звукопоглощающего материала, при этом первый слой 39, более жесткий, выполнен сплошным и профилированным и закреплен на внешней поверхности 37, второй слой 40, более мягкий, чем первый, выполнен прерывистым и расположен в фокусе звукоотражающих поверхностей первого слоя 39. Прерывистый звукопоглощающий слой 40, расположенный в фокусе сплошного профилированного слоя 39, выполнен в форме тел вращения, например в виде шаров, эллипсоидов вращения, и крепится с помощью стержней 42 (на чертеже показано сечение с одним стержнем 42, параллельных перфорированным поверхностям 37 и 38, которые жестко связанны между собой посредством вертикальных, перпендикулярных к ним крепежных элементов, например в виде пластин 43, один конец которых жестко закреплен на внешней поверхности 37, а второй выполнен в виде хомута, охватывающего стержень 42, и стягивающего его винтом (на чертеже не показано).
Сплошной профилированный слой 39 звукопоглощающего элемента выполнен из более жесткого звукопоглощающего материала, у которого коэффициент отражения звука больше, чем коэффициент звукопоглощения, причем профили 41 образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей 41 образует цельный куполообразный профиль, фокусирующий отраженный звук на один и тот же мягкий прерывистый звукопоглощающий слой 40.
Третий слой 44 звукопоглощающего элемента выполнен из вспененного звукопоглощающего материала, например строительной герметизирующей пены, который повышает звукоизолирующие свойства конструкции в целом, за счет заполнения пустот, образованных слоями 37 и 38, а также увеличивает надежность конструкции в целом при установке ее на оборудовании, работающем в условиях с повышенными ударными и вибрационными нагрузками. Третий слой 44 расположен между первым, более жестким слоем 39, и перфорированной поверхностью 38 звукопоглощающего элемента.
Возможен вариант выполнения прерывистого звукопоглощающего слоя 40, расположенного в фокусе сплошного профилированного слоя 39, в виде по крайней мере одной жесткой резонансной оболочки 46 с резонансными отверстиями 45, выполняющими функции горловины резонаторов Гельмгольца, а полость оболочки 46 представляет собой дополнительный объем резонаторов Гельмгольца.
Звукопоглощающий элемент работает следующим образом.
Звуковая энергия, пройдя через слой внешней перфорированной поверхности 37 и третий слой 40 звукопоглощающего элемента, выполненного из вспененного звукопоглощающего материала, падает на прерывистый звукопоглощающий слой, расположенный в фокусе сплошного профилированного слоя 39, где происходит первичное рассеивание звуковой энергии. Затем звуковая энергия попадает на сплошной профилированный слой 39 из звукопоглощающего материала, образованного сферическими поверхностями, образующими цельный куполообразный профиль, и фокусирующий отраженный звук на мягкий звукопоглотитель. Здесь осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов ʺГельмгольцаʺ, имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО КОЧЕТОВА ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2014 |
|
RU2583441C1 |
КОМПЛЕКС ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2017 |
|
RU2646996C1 |
УСТРОЙСТВО ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2017 |
|
RU2663523C1 |
УСТРОЙСТВО ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2014 |
|
RU2648733C2 |
СПОСОБ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2016 |
|
RU2620505C1 |
КОМПЛЕКС ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2017 |
|
RU2671261C1 |
СПОСОБ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2017 |
|
RU2651566C1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА | 2017 |
|
RU2671278C1 |
СПОСОБ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2012 |
|
RU2500860C1 |
КОМПЛЕКС КОЧЕТОВА ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2013 |
|
RU2547524C1 |
Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума. Устройство для акустической защиты оператора содержит рабочее место оператора, оснащенное средствами снижения шума. Рабочее место оператора расположено между акустическими экранами, которые защищают оператора от прямого звука, распространяющегося от виброактивного оборудования. Над рабочей зоной установлен акустический подвесной потолок, размещенный в верхней зоне помещения. Для снижения звуковой вибрации рабочее место оператора оснащено полом на упругом основании, осуществляющем двухкаскадную виброзащиту оператора. Также предусмотрен кулисный звукопоглотитель, который состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, а к каркасу прикреплен просечно-вытяжной стальной лист. Каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер d×h×b, отношение которых лежит в оптимальном интервале величин d:h:b=2:1:0,5 или куба с размером ребра k×L, где min L=100 мм; k-коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2. При всех схемах подвеса должны соблюдаться оптимальные соотношения размеров: m - от точки подвеса каркаса на направляющей до потолка и с - расстояние между осями соседних каркасов. Отношение этих размеров должно находиться в оптимальном интервале величин: m:c=1:1…0,5:1. Устройство также содержит стеновые акустические шумопоглощающие панели, установленные на перекрытии, при монтаже которых используют ленточную прокладку ВИБРОСТЕК-М, которую укладывают в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком. При монтаже используют герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик для герметизации стыков и соединений в специальных звукоизолирующих конструкциях. В качестве виброизолирующих стеновых креплений используют ВИБРОФЛЕКС-амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения. Для монтажа к вертикальным ограждающим конструкциям используют стеновые варианты креплений типа ЕР - микропористый полиуретановый эластомер, специально для решения задач звуко- и виброизоляции. Акустическая шумопоглощающая панель выполнена в виде звукопоглощающего элемента в виде корпуса с внешней и внутренней перфорированными стенками, между которыми размещены слои звукопоглощающего материала. Первый слой, более жесткий, выполнен сплошным и профилированным и закреплен на внешней поверхности. Второй слой, более мягкий чем первый, выполнен прерывистым и расположен в фокусе звукоотражающих поверхностей первого слоя. Третий слой звукопоглощающего элемента выполнен из вспененного звукопоглощающего материала, например строительной герметизирующей пены, и расположен между первым, более жестким слоем, и перфорированной поверхностью звукопоглощающего элемента. Прерывистый звукопоглощающий слой, расположенный в фокусе сплошного профилированного слоя, выполнен в форме тел вращения и крепится с помощью стержней, параллельных перфорированным поверхностям, которые жестко связанны между собой посредством вертикальных, перпендикулярных к ним крепежных элементов, один конец которых жестко закреплен на гладкой поверхности, а второй выполнен в виде хомута, охватывающего стержень и стягивающего его винтом. Сплошной профилированный слой выполнен из более жесткого звукопоглощающего материала, у которого коэффициент отражения звука больше, чем коэффициент звукопоглощения. Профили образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук на один и тот же мягкий прерывистый звукопоглощающий слой. Прерывистый звукопоглощающий слой, расположенный в фокусе сплошного профилированного слоя, содержит по крайней мере одну жесткую резонансную оболочку с резонансными отверстиями, выполняющими функции горловины резонаторов Гельмгольца, при этом полость оболочки представляет собой дополнительный объем резонаторов Гельмгольца. Изобретение позволяет повысить эффективность шумоглушения. 8 ил., 1 табл.
Устройство для акустической защиты оператора, содержащее рабочее место оператора, оснащенное средствами снижения шума, рабочее место оператора расположено между акустическими экранами, которые защищают оператора от прямого звука, распространяющегося от виброактивного оборудования, а над рабочей зоной установлен акустический подвесной потолок, размещенный в верхней зоне помещения, а для снижения звуковой вибрации рабочее место оператора оснащено полом на упругом основании, осуществляющем двухкаскадную виброзащиту оператора, а также предусмотрен кулисный звукопоглотитель, который состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, а к каркасу прикреплен просечно-вытяжной стальной лист, а каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер d×h×b, отношение которых лежит в оптимальном интервале величин d:h:b=2:1:0,5 или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2, причем при всех схемах подвеса должны соблюдаться оптимальные соотношения размеров: m - от точки подвеса каркаса на направляющей до потолка и с - расстояние между осями соседних каркасов, причем отношение этих размеров должно находиться в оптимальном интервале величин: m:c=1:1…0,5:1, также содержит стеновые акустические шумопоглощающие панели, установленные на перекрытии, при монтаже которых используют ленточную прокладку ВИБРОСТЕК-М, которую укладывают в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком, при монтаже используют герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик для герметизации стыков и соединений в специальных звукоизолирующих конструкциях, а в качестве виброизолирующих стеновых креплений – ВИБРОФЛЕКС - амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения, а для монтажа к вертикальным ограждающим конструкциям используют стеновые варианты креплений типа ЕР - микропористый полиуретановый эластомер, специально для решения задач звуко- и виброизоляции, отличающееся тем, что акустическая шумопоглощающая панель выполнена в виде звукопоглощающего элемента в виде корпуса с внешней и внутренней перфорированными стенками, между которыми размещены слои звукопоглощающего материала, при этом первый слой, более жесткий, выполнен сплошным и профилированным и закреплен на внешней поверхности, второй слой, более мягкий, чем первый, выполнен прерывистым и расположен в фокусе звукоотражающих поверхностей первого слоя, при этом первый слой, более жесткий, выполнен сплошным и профилированным, а второй слой, более мягкий, чем первый, выполнен прерывистым и расположен в фокусе звукоотражающих поверхностей первого слоя, а третий слой звукопоглощающего элемента выполнен из вспененного звукопоглощающего материала, например строительной герметизирующей пены, и расположен между первым, более жестким слоем, и перфорированной поверхностью звукопоглощающего элемента, причем прерывистый звукопоглощающий слой, расположенный в фокусе сплошного профилированного слоя, выполнен в форме тел вращения и крепится с помощью стержней, параллельных перфорированным поверхностям, которые жестко связанны между собой посредством вертикальных, перпендикулярных к ним крепежных элементов, один конец которых жестко закреплен на гладкой поверхности, а второй выполнен в виде хомута, охватывающего стержень и стягивающего его винтом, при этом сплошной профилированный слой выполнен из более жесткого звукопоглощающего материала, у которого коэффициент отражения звука больше, чем коэффициент звукопоглощения, причем профили образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук на один и тот же мягкий прерывистый звукопоглощающий слой, при этом прерывистый звукопоглощающий слой, расположенный в фокусе сплошного профилированного слоя, содержит по крайней мере одну жесткую резонансную оболочку с резонансными отверстиями, выполняющими функции горловины резонаторов Гельмгольца, при этом полость оболочки представляет собой дополнительный объем резонаторов Гельмгольца.
УСТРОЙСТВО КОЧЕТОВА ДЛЯ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2014 |
|
RU2583441C1 |
Способ выделения гелия | 1959 |
|
SU139312A1 |
СПОСОБ АКУСТИЧЕСКОЙ ЗАЩИТЫ ОПЕРАТОРА | 2012 |
|
RU2500860C1 |
Плитки для тротуаров, мостовых и облицовок, и приспособление для их изготовления | 1925 |
|
SU2993A1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА | 2010 |
|
RU2425197C1 |
US 3881569 A1, 06.05.1975 | |||
DE 102004037260 A1, 23.03.2006. |
Авторы
Даты
2018-01-31—Публикация
2016-12-19—Подача