Измеритель напряженности электростатического поля Российский патент 2018 года по МПК G01R29/12 G01R5/28 

Описание патента на изобретение RU2643701C1

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электростатического поля при геофизических исследованиях атмосферы и космического пространства.

Известен вибрационный измеритель напряженности электрического поля двухблочной конструкции, состоящий из датчика и преобразователя. Датчик измерителя содержит чувствительный электрод, подключенный к предусилителю, и электромагнитный вибрационный возбудитель резонансного типа, состоящий из катушки возбуждения и ферромагнитного стержня, закрепленного на упругой подвеске и механически связанного с чувствительным электродом. Чувствительный электрод электростатически связан с измеряемым электрическим полем через отверстие в корпусе датчика. Внутри корпуса преобразователя установлены автогенератор, усилитель и фазовый детектор. Датчик и преобразователь измерителя соединены кабелем для того, чтобы обеспечить подключение автогенератора к катушке возбуждения и выход предусилителя с входом усилителя, который подключен к измерительному входу фазового детектора. Управляющий вход фазового детектора подключен к автогенератору (патент US 3611127 A, МПК G01R 31/02, 1971 г.). Электрическая частота автогенератора устанавливается равной механической частоте вибрации ферромагнитного стержня. В результате чувствительный электрод, механически связанный с вибрирующим электродом, также начинает вибрировать, периодически удаляясь и приближаясь к отверстию в металлическом корпусе датчика. Это приводит к изменению степени электростатической связи чувствительного электрода с измеряемым полем Е0 и, как известно, к изменению величины индуцированного на нем заряда q, которое равно:

где q0 - величина индуцированного заряда, когда чувствительный электрод неподвижен,

Δq - приращение величины индуцированного заряда,

Е0 - напряженность электрического поля в зоне чувствительного электрода, когда он неподвижен,

ΔЕ - изменение напряженности электрического поля у чувствительного электрода,

S0 - площадь чувствительного электрода,

εε0 - абсолютная диэлектрическая проницаемость среды.

Так как для вибрационных измерителей электрического поля S0 и εε0 являются постоянными величинами, а изменение приращения напряженности электрического поля у чувствительного электрода ΔЕ происходит по синусоидальному закону, то величина тока, протекающая по входному сопротивлению предусилителя датчика, будет равна:

где ΔЕ0 - амплитуда изменения приращения напряженности электрического поля Е0 у чувствительного электрода,

ω=2π⋅Fм, Fм - частота колебаний чувствительного электрода.

Ток i преобразуется предусилителем, усилителем и фазовым детектором в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Е0, а знак - соответствует полярности электрического поля Е0.

Измерители напряженности электрического поля вибрационного типа, работающие на механическом резонансе, имеют малые габариты и вес и большой ресурс работы и поэтому получили широкое распространение при исследованиях атмосферы и космического пространства и самих летательных аппаратов, где упомянутые характеристики являются решающими. Кроме того, реализация данного измерителя в виде двух блоков - датчика и преобразователя, соединенных кабелем, - позволяет значительно расширить диапазон его применения и, в частности, позволяет устанавливать датчик, являющийся собственно измерительной частью измерителя, в труднодоступных местах летательных аппаратов. Поэтому в настоящее время измерители электрического поля в виде двухблочной конструкции практически вытеснили измерители электрического поля, реализованные в одноблочной конструкции.

Необходимо отметить, что в измерителях напряженности электрического поля вибрационного типа амплитуда приращения напряженности электрического поля в зоне чувствительного электрода значительно меньше напряженности измеряемого электрического поля Е0, и поэтому:

где Х0 - амплитуда колебаний вибрирующего электрода датчика, k - коэффициент пропорциональности между приращением электрического поля ΔЕ0 и амплитуды колебаний вибрирующего электрода х0, выражение (2) для наведенного тока i можно записать в виде:

Из выражения (4) видно, что для датчиков, имеющих различные механические резонансные частоты вибрирующих электродов Fм и амплитуды колебаний Х0, величина тока i, а следовательно, и чувствительности датчиков будут различными. Причем чем больше разброс частот Fм и амплитуд колебаний Х0, тем больше разброс чувствительностей этих датчиков.

В связи с тем, что электромагнитный возбудитель данного измерителя вибрирует на резонансной механической частоте Fм, требования к точности и стабильности частоты переменного напряжения Fэ, вырабатываемого автогенератором, очень высоки. Это объясняется тем, что вибрирующий электрод электромагнитного возбудителя является резонансной механической системой, имеющей высокую добротность Q, равную 100-200. А как известно, добротность Q связана с полосой пропускания колебательной системы соотношением:

где Fм - резонансная частота системы,

ΔFм - полоса пропускания системы на уровне 0,7.

С учетом того, что электромагнитные возбудители работают на частотах от 100 до 500 Гц, из соотношения (5) вытекает, что полоса пропускания ΔFм не превышает (1-2) Гц. Поэтому отклонение частоты переменного напряжения Fэ от резонансной механической частота возбудителя Fм не должно быть более 0,1%, так как в противном случае происходит сначала уменьшение амплитуды механических колебаний, а затем и прекращение вибрации. А так как уменьшение амплитуды механических колебаний вибрирующего электрода приводит к уменьшению амплитуды изменения приращения электрического поля ΔЕ0, то из соотношения (2) видно, что чувствительность измерителя уменьшается, и при прекращении вибрации возбудителя измеритель становится неработоспособным. Кроме того, исполнение измерителя в виде двух отдельных блоков - датчика и преобразователя - накладывает значительные трудности на его серийное изготовление. Это объясняется тем, что электромеханические возбудители отдельных экземпляров датчиков имеют значительный разброс механических резонансных частот, доходящий до 30%, и настройка электрической частоты автогенератора Fэ, находящегося в блоке преобразования, на определенное значение в процессе изготовления неэффективна, так как заранее неизвестно, с каким именно датчиком будет использоваться данный преобразователь. Это приводит к тому, что далеко не каждый из изготовленных датчиков сможет возбудиться, а, следовательно, и быть работоспособным с конкретным преобразователем. Аналогичные устройства приведены так же в патенте RU №2414717 от 20.03.11 г. и авторском свидетельстве SU №781717 от 23.11.80 г.

Наиболее близким по технической сущности и положительному эффекту, достигаемому при использовании, к заявляемому устройству, является измеритель напряженности электрического поля вибрационного типа - патент US 3851247 МПК G01R 29/12, G01R 5/28, 1974 г. Он состоит из двух блоков - датчика и преобразователя. Датчик измерителя содержит чувствительный электрод, подключенный к предусилителю, и электромагнитный возбудитель резонансного типа, состоящий из катушки возбуждения и ферромагнитного стержня, закрепленного на упругой подвеске и механически связанного с чувствительным электродом. Чувствительный электрод электростатически связан с измеряемым электрическим полем через отверстие в металлическом корпусе датчика.

Внутри корпуса преобразователя установлены автогенератор, усилитель, фазовый детектор, подключенный к регистратору. Автогенератор выполнен по схеме резонансного LC-генератора с оптронной цепью стабилизации амплитуды выходного напряжения, питающего катушку возбуждения вибрационного возбудителя, которая одновременно используется как индуктивность LC-генератора. Благодаря этому возникают наиболее благоприятные условия самовозбуждения автогенератора на резонансной механической частоте Fм вибрирующего электрода, что обеспечивает его надежное самовозбуждение при относительном разбросе резонансных механической Fм и электрической Fэ частот до 5%. При возбуждении вибрации ферромагнитного стержня начинает вибрировать и механически связанный с ним чувствительный электрод. При этом чувствительный электрод периодически то удаляется, то приближается к отверстию в металлическом корпусе датчика, что приводит к изменению степени электростатической связи чувствительного электрода с измеряемым электрическим полем и возникновению на нем переменного заряда, который, стекая по входному сопротивлению предусилителя, создает на нем переменное напряжение. Это переменное напряжение преобразуется предусилителем, усилителем и фазовым детектором в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Е0, а знак соответствует его полярности.

Оптронная цепь отрицательной обратной связи в автогенераторе стабилизирует амплитуду переменного тока в катушке возбуждения, благодаря чему стабилизируется амплитуда колебаний вибрирующего электрода не только при воздействии температуры, но и при замене одного датчика другими, имеющими различные резонансные механические частоты, если, конечно, этот разброс частот не превышает 5%. В противном случае оптимальные условия для самовозбуждения резонансного LC-генератора на механической резонансной частоте датчика нарушаются и измеритель становится неработоспособным. Это объясняется тем, что коэффициент передачи цепи положительной обратной связи автогенератора данного измерителя мало зависит от вносимого сопротивления Zвн, которое обусловлено вибрацией подвижного электрода (A.M. Туричин. Электрические измерения неэлектрических величин). В самом деле, из эквивалентной схемы этого генератора, показанной на фиг. 4, видно, что коэффициент цепи положительной обратной связи равен:

где - комплексное напряжение на входе цепи положительной обратной связи, образованной резистором R1, комплексным сопротивлением электрического контура автогенератора Rэл и комплексным вносимым сопротивлением Zвн, обусловленным вибрацией подвижного электрода ПЭ,

- комплексное напряжение на выходе цепи положительной обратной связи, являющееся одновременно входным напряжением усилителя ДА1.

Максимальное значение имеет тогда, когда Zвн не равно нулю, то есть когда происходит вибрация подвижного электрода ПЭ. Так как без электрических колебаний автогенератора не происходит механической вибрации подвижного электрода ПЭ, то, очевидно, необходимо, чтобы электрическая Fэл и механическая Fм частоты были равны. Если Fэл не равна Fм, то механическая вибрация не возникает, при этом Zвн равно нулю, и коэффициент передачи цепи положительной обратной связи уменьшается до значения:

Учтя, что в реальных конструкциях Zэл≈Zвн≈R1, получим отношение минимального и максимального значений коэффициентов передачи цепи положительной обратной связи равными:

Как видно из (8), различие между и составляет всего 25%, поэтому если даже вибрация подвижного электрода ПЭ отсутствует, автогенератор будет вырабатывать электрические колебания с частотой Fэл, так как оптронная цепь регулирования, выполненная на светодиоде DV1, диоде DV2, фототранзисторе R2 и резисторах R3, R4, автоматически увеличит коэффициент усиления усилителя ДА1 до значения , обеспечив тем самым необходимые условия для самовозбуждения автогенератора на частоте Fэл. Очевидно, что отсутствие механических колебаний Fм вибрирующего электрода ПЭ при наличии электрических колебаний автогенератора делает данный измеритель неработоспособным.

Экспериментально было установлено, что различие частот Fэл и Fм более чем на 4% приводит к срыву колебаний вибрирующего электрода ПЭ, хотя его автогенератор продолжает вырабатывать электрические колебания с частотой Fэл. Кроме того, из выражения (5), полученного выше, видно, что чувствительности датчиков, имеющих различные механические частоты Fм, будут неодинаковыми, что также является существенным недостатком данного измерителя.

Технической проблемой, решение которой обеспечивается при использовании изобретения, является повышение надежности работы измерителя и стабилизация точности измерений при воздействии дестабилизирующих факторов и при разбросе резонансной механической частоты вибрирующего электрода в процессе серийного производства посредством стабилизации линейной скорости колебательного движения вибрирующего электрода измерителя.

Технический результат достигается тем, что в измеритель напряженности электрического поля вибрационного типа, содержащий чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя, введены датчик скорости колебательного движения, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор, выход датчика скорости колебательного движения подключен к неинвертирующему входу усилителя, соединенного с входом фильтра нижних частот, частота среза которого установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода, выход фильтра нижних частот через источник тока подключен к катушке возбуждения, кроме того, выход датчика скорости колебательного движения через компаратор подключен к управляющему входу фазового детектора, а через выпрямитель - к одному из входов дополнительного усилителя, другой вход которого подключен к источнику опорного напряжения, выход дополнительного усилителя соединен с управляющим входом регулируемого сопротивления, причем датчик скорости колебательного движения вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, разделенных короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности.

Функциональная схема предлагаемого устройства приведена на фиг. 1. На фиг. 2, 4 изображены эквивалентные схемы генераторов и электромагнитных возбудителей соответственно заявленного измерителя и прототипа. На фиг. 3 приведена конструкция электромагнитного возбудителя, датчика линейной скорости вибрирующего электрода и электрическая схема заявленного измерителя.

Измеритель напряженности электрического поля вибрационного типа (фиг. 1) содержит чувствительный электрод 1, подключенный через измерительный усилитель 2 к измерительному входу фазового детектора 3, вибрационный электромагнитный возбудитель резонансного типа 4 и генератор 5. Вибрационный возбудитель 4 состоит из вибрирующего электрода 6, выполненного из ферромагнитного материала и закрепленного на упругой подвеске 7, и катушки возбуждения 8. Кроме того, измеритель содержит датчик линейной скорости колебательного движения 9, установленный в зоне вибрации вибрирующего электрода 6. Генератор 5 включает в себя усилитель 10, фильтр низких частот 11, дополнительный усилитель 12, выпрямитель 13, регулируемое сопротивление 14, источник тока 15, источник опорного напряжения 16 и компаратор 17. Выход датчика скорости колебательного движения 9 подключен к неинвертирующему входу усилителя 10, к выпрямителю 13 и к компаратору 17. Выход выпрямителя 13 подключен к одному из входов дополнительного усилителя 12, другой вход которого подключен к источнику опорного напряжения 16. Выход дополнительного усилителя 12 через источник тока 15 подключен к катушке возбуждения 8. Выход компаратора 17 подключен к управляющему входу фазового детектора 3. Частота среза фильтра нижних частот 11 установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода 6, которая является верхней в диапазоне резонансных частот вибрирующих электродов серийно изготавливаемых датчиков.

Измеритель состоит из двух блоков - датчика и преобразователя. В корпусе датчика установлены чувствительный электрод 1, электромагнитный возбудитель 4 и датчик линейной скорости 9. Внутри корпуса преобразователя установлены усилитель 2, фазовый детектор 3 и генератор 5.

Измеритель напряженности электрического поля вибрационного типа работает следующим образом.

При помещении датчика измерителя в исследуемое электрическое поле, имеющее напряженность Е0, на его чувствительный электрод 1 наводится переменный электрический заряд q, обусловленный колебаниями вибрирующего электрода 6. Переменный заряд q, протекая по входному сопротивлению измерительного усилителя 2, создает ток i, величина которого соответствует выражениям (2) и (4). Этот переменный ток i преобразуется усилителем 2 и фазовым детектором 3 в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Ео, а знак - полярности электрического поля.

В режиме, когда процесс колебаний вибрирующего электрода 6 уже установился, на выходе датчика линейной скорости 9 вырабатывается переменное напряжение, амплитуда которого равна выходному напряжению источника опорного напряжения 16. Равенство напряжений на выходах источника опорного напряжения 16 и датчика скорости 9 обеспечивается цепью автоматической регулировки усиления, охватывающей усилитель 10. Она образована датчиком линейной скорости 9, выпрямителем 13, дополнительным усилителем 12 и регулируемым сопротивлением 14. При воздействии дестабилизирующих факторов, приводящих к изменению амплитуды колебаний Х0 вибрирующего электрода 6, а, следовательно, и его линейной скорости V, которая равна:

напряжение на выходе датчика скорости 9 изменяется. Это приводит к соответствующему изменению напряжения на выходе выпрямителя 13 и увеличению разностного сигнала на выходах дополнительного усилителя 12. Этот разностный сигнал, усиленный дополнительным усилителем 12, управляет величиной регулируемого сопротивления 14, что вызывает пропорциональное изменение коэффициента усиления усилителя 10, а, следовательно, и величины тока, вырабатываемого источником тока 15, который питает катушку возбуждения 8. Так как механическая сила, приводящая вибрирующий электрод 6 в движение, изменяется прямо пропорционально силе тока, протекающего по катушке возбуждения 8, то амплитуда колебаний последнего изменяется в сторону, противоположную воздействующим факторам до тех пор, пока амплитуда напряжения на выходе датчика скорости 9 не установится равной величине напряжения источника опорного напряжения 16. Аналогично при замене одного датчика другим, имеющим резонансную частоту Fм, отличную от предыдущего датчика, например, превышающую ее на 30%, за счет цепи автоматической регулировки усиления происходит уменьшение амплитуды колебаний Х0 вибрирующего электрода 6 на 30%, однако согласно выражению (6) линейная скорость V вибрирующего электрода 6 при этом остается постоянной, и поэтому в соответствии с формулой (5) величина тока i, протекающего по входному сопротивлению измерительного усилителя 2, не изменяется.

Коэффициент передачи цепи положительной обратной связи электрического генератора данного измерителя (фиг. 2) равен:

где - - комплексная амплитуда напряжения на выходе датчика линейной скорости 9,

- комплексная амплитуда тока на выходе источника тока 15, питающего катушку возбуждения 8,

Zвн - вносимое сопротивление, обусловленное вибрацией подвижного электрода 6,

Z8 - полное сопротивление катушки возбуждения 8, равное сумме активного R8 и индуктивного Х8 сопротивлений.

Учтя, что

где а - коэффициент пропорциональности, а ток возбуждения равен (фиг. 2):

где В0 - магнитная индукция в зазоре магнитной системы электромагнитного возбудителя,

s - геометрические параметры обмотки возбуждения 8,

и подставив выражения (11) и (12) в (10), получим:

Как видно из уравнения (13), при неподвижном вибрирующем электроде 6, когда Zвн равно нулю, коэффициент передачи также равен нулю. То есть возникновение электрических колебаний генератора происходит только при подвижном вибрирующем электроде 6, причем лишь на собственной резонансной механической частоте конкретного вибрирующего электрода для всех серийно изготавливаемых датчиков измерения. Это объясняется тем, что в генераторе имеется лишь одна колебательная система - механическая, которая характеризуется на эквивалентной схеме вносимым сопротивлением Zвн, имеющим амплитудно-частотную характеристику в виде резонансной кривой с максимумом на резонансной механической частоте Fм.

Частота среза фильтра нижних частот 11 установлена равной (1,1-1,8) Fм для того чтобы, с одной стороны, исключить возможность самовозбуждения генератора 5 на второй и других высших гармониках частоты Fм и тем самым обеспечить неискаженный синусоидальный ток возбуждения и гармонические колебания вибрирующего электрода 6, необходимые для получения точных измерений, а с другой стороны, сохранить условие баланса фаз, необходимое для самовозбуждения генератора 5 со всеми серийно изготавливаемыми датчиками, имеющими разброс резонансных частот вибрирующих электродов до 30%.

Конструкция электромагнитного возбудителя 4, датчика скорости 9 и электрическая схема генератора 5 могут быть выполнены, например, так как показано на фиг. 3.

Вибрирующий электрод 6 выполнен в виде ферромагнитного стержня, укрепленного на упругой подвеске 7. Упругая подвеска 7 выполнена в виде плоской пружины, концы которой закреплены в корпусе датчика, и образует вместе с вибрирующим электродом 6 крестообразную, сбалансированную, упругую систему, имеющую резонансную механическую частоту колебаний Fм=(150-200) Гц. Один конец вибрирующего электрода 6 имеет отверстие, охватывающее чувствительный электрод 1, другой конец электрода 6 установлен внутри катушек возбуждения 8 и дополнительной 18 между полюсами постоянного магнита 19. При протекании переменного тока по катушке возбуждения 8 возникающее переменное магнитное поле намагничивает ферромагнитный стержень 6, который, взаимодействуя с полем постоянного магнита 19, начинает вибрировать, изменяя тем самым глубину погружения чувствительного электрода 1 в отверстие вибрирующего электрода 6, а, следовательно, и величину напряженности электрического поля на чувствительном электроде 1. Конструктивно датчик линейной скорости вибрирующего электрода 9 выполнен индукционным в виде дополнительной катушки 18, расположенной с катушкой возбуждения 8 соосно на общем каркасе в разных секциях, разделенных короткозамкнутым алюминиевым экраном, и постоянного магнита 19. Короткозамкнутый алюминиевый экран обеспечивает минимальную индуктивную связь между катушкой возбуждения 8 и дополнительной катушкой 18.

Усилитель 10 и фильтр нижних частот 11 выполнены на операционном усилителе 20, резисторах 21, 22 и конденсаторе 23. Частота среза фильтра нижних частот 11 установлена равной 250 Гц. Дополнительный усилитель 12 выполнен на операционном усилителе 24, резисторах 25, 26 и конденсаторах 27, 28. Выпрямитель 12 построен на операционном усилителе 29, диоде 30 и конденсаторе 31 по схеме «идеального» диода, которая обеспечивает выпрямление сигналов датчика линейной скорости 9, имеющих малую амплитуду, способствуя тем самым высокой точности поддержания линейной скорости вибрирующего электрода 6 на уровне, заданном источником опорного напряжения 16. Регулируемое сопротивление 14 выполнено на полевом транзисторе 32 и резисторе 33 и обеспечивает пределы регулирования коэффициента усиления усилителя 10 от 20 до 2. Источник тока 15 выполнен на операционном усилителе 34 и резисторах 35-39 по схеме источника тока с заземленной нагрузкой, который является катушка возбуждения 8. Компаратор 17 выполнен на операционном усилителе 40 и формирует из синусоидального напряжения датчика скорости 9 прямоугольные импульсы напряжения, управляющие работой фазового детектора 3.

Экспериментально было установлено, что заявленный измеритель напряженности электрического поля вибрационного типа надежно работает и обеспечивает сохранение точности измерений при разбросе механических резонансных частот вибрирующих электродов разных датчиков, достигающем 35%, и в диапазоне температур от минус 40°С до плюс 90°С. В то время как прототип надежно работает и сохраняет точность измерения при разбросе механических частот вибрирующих электродов разных датчиков равном 4% и в диапазоне температур от минус 10°С до +45°С. Кроме того, было установлено, что в процессе серийного производства измерителя разброс резонансной механической частоты вибрирующего электрода доходит до 30%, поэтому введение и соответствующее соединение новых элементов обеспечивает надежность работы и сохранение чувствительности измерителя при разбросе резонансной механической частоты вибрирующего электрода достигающего 35%, то, очевидно, что тем самым обеспечивается серийная пригодность заявленного измерителя.

Похожие патенты RU2643701C1

название год авторы номер документа
Устройство для измерения плотности и вязкости жидких сред 1982
  • Катков Модест Сергеевич
  • Капитанов Владислав Леонидович
  • Зайцев Валерий Владимирович
  • Пинчук Илья Алексеевич
  • Вересов Владимир Михайлович
SU1092377A1
МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП 2016
  • Нестеренко Тамара Георгиевна
  • Баранов Павел Фёдорович
  • Цимбалист Эдвард Ильич
RU2656119C2
Измеритель напряженности электрического поля 1981
  • Тютин Александр Алексеевич
  • Тютин Алексей Алексеевич
  • Тучков Геннадий Александрович
SU983586A1
ВСТРОЕННЫЕ В ТРУБОПРОВОД ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА И СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ВО ВСТРОЕННЫХ В ТРУБОПРОВОД ИЗМЕРИТЕЛЬНЫХ УСТРОЙСТВАХ 2006
  • Драм Вольфганг
  • Ридер Альфред
  • Чжу Хао
RU2369842C2
Устройство для измерения магнитной восприимчивости 1980
  • Арш Эмануэль Израилевич
  • Хандецкий Владимир Сергеевич
SU907485A1
Пьезоэлектрический датчик давления 1985
  • Колесник Евгений Сергеевич
  • Скульский Константин Владимирович
SU1307255A1
АВТОГЕНЕРАТОР МАГНИТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ВИБРАЦИОННОГО ГИРОСКОПА И СПОСОБ БАЛАНСИРОВКИ АВТОГЕНЕРАТОРА 2007
  • Фролов Евгений Николаевич
  • Соловьев Дмитрий Олегович
  • Мезенцев Александр Павлович
RU2359401C1
Устройство ввода энергии в газоразрядную плазму 2018
  • Тычинский Александр Юльевич
  • Карамов Сергей Вадимович
RU2695541C1
Способ определения колебательных характеристик упругой конструкции в точке возбуждения 1974
  • Васильев Камиль Исхакович
SU855406A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВЯЗКОСТИ 2002
  • Драм Вольфганг
  • Матт Кристиан
  • Ридер Альфред
RU2315974C2

Иллюстрации к изобретению RU 2 643 701 C1

Реферат патента 2018 года Измеритель напряженности электростатического поля

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электростатического поля при геофизических исследованиях атмосферы и космического пространства. Техническим результатом является повышение надежности работы измерителя и стабилизация точности измерений при воздействии дестабилизирующих факторов и при разбросе резонансной механической частоты вибрирующего электрода в процессе серийного производства. Измеритель напряженности электрического поля вибрационного типа содержит чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске, и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя. Дополнительно введены датчик скорости колебательного движения, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор. Частота среза фильтра нижних частот установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода. Датчик скорости колебательного движения вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, которые разделены короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности. 1 з.п. ф-лы. 4 ил.

Формула изобретения RU 2 643 701 C1

1. Измеритель напряженности электрического поля вибрационного типа, содержащий чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя, отличающийся тем, что в него введены датчик скорости колебательного движения, установленный в зоне вибрации вибрирующего электрода, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор, выход датчика скорости колебательного движения подключен к неинвертирующему входу усилителя, выход которого соединен с входом фильтра нижних частот, частота среза которого установлена равной (1,1-1,8)Fм, где Fм - частота механического резонанса вибрирующего электрода, выход фильтра нижних частот через источник тока подключен к катушке возбуждения, кроме того, выход датчика скорости колебательного движения через компаратор подключен к управляющему входу фазового детектора, а через выпрямитель - к одному из входов дополнительного усилителя, другой вход которого подключен к источнику опорного напряжения, выход дополнительного усилителя соединен с управляющим входом регулируемого сопротивления.

2. Измеритель напряженности электрического поля вибрационного типа по п. 1, отличающийся тем, что датчик линейной скорости вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, разделенных короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности.

Документы, цитированные в отчете о поиске Патент 2018 года RU2643701C1

US 3851247 A1 26.11.1974
Устройство для измерения электрического потенциала заряженной поверхности 1975
  • Добровольскис Альгимантас Теодоро
  • Сакалаускас Станисловас Юозо
  • Петретис Бронислав Миколо
SU781717A1
Устройство измерения напряженности электростатического поля 1976
  • Азаров Николай Иванович
  • Бочев Александр Сергеевич
  • Голутвин Сергей Михайлович
  • Мрыхин Станислав Дмитриевич
  • Фигурнов Евгений Петрович
SU771570A1
ДАТЧИК ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ 2010
  • Шилов Александр Михайлович
  • Прокопьев Юрий Михайлович
  • Прокопьев Виталий Юрьевич
  • Щепихин Игорь Владимирович
RU2414717C1
Датчик электростатического поля 1979
  • Филиппов Анатолий Николаевич
  • Пушкин Николай Моисеевич
  • Машков Александр Сергеевич
SU881628A1
Способ измерения вектора напряженности электрического поля атмосферы 1985
  • Шингаркин Александр Дмитриевич
  • Зеленков Вадим Евгеньевич
  • Казаков Владимир Васильевич
SU1285404A1
US 6242911 B1 05.06.2001.

RU 2 643 701 C1

Авторы

Филиппов Анатолий Николаевич

Пушкин Николай Моисеевич

Лакшин Кирилл Владимирович

Даты

2018-02-05Публикация

2016-11-07Подача