Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.
Известен сердечник из аморфного железа [патент US №5903082 А, H02K 1/12, H02K 21/12, H02K 37/12, Н02Р9/18, H02K 21/24, H02K 1/14, H02K 1/02, H02K 1/04, H02K 29/10, H02K 1/18, 11.05.1999], содержащий отдельно сформированные аморфное ярмо и аморфные полюса, которые совместно установлены в корпусе из диэлектрика, образовывая при этом сердечник статора электромеханического преобразователя энергии.
Недостатками данного аналога являются сложность его изготовления и низкие магнитные свойства, обусловленные значительными нарушениями геометрии магнитопровода статора из аморфного железа при сборке отдельных полюсов и ярма, а также низкий теплоотвод потерь энергии от магнитопровода статора из аморфного железа.
Известен статор электрической машины, например электродвигателя электрического транспортного средства [патент DE 102012207508 А1, H02K 1/06, H02K 1/12, H02K 15/02, 7.11.2013], содержащий П-образные сердечники, которые ламинированы из нескольких листов электротехнической стали. Из n П-образных сердечников набирается магнитопровод.
Недостатками данного магнитопровода статора являются сложность его изготовления и установки в корпусе электрической машины, а также значительные аэродинамические потери энергии на трение ротора с воздухом.
Наиболее близким по технической сущности и достигаемому результату к заявляемому является магнитопровод статора из аморфного железа [патент US 6960860 B1, H02K 1/14, H02K 1/12, H02K 15/02, 01.10.2005], содержащий ротор, n подковообразных сердечников, набранных из ленты аморфного железа и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах магнитопровода статора.
Недостатками ближайшего аналога является его низкая эффективность и низкие удельные показатели в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, обусловленные повышенными габаритными размерами из-за низкой индукции насыщения ленты аморфного железа, а также значительными потерями энергии на трение ротора с воздухом, обусловленными негладкой внутренней поверхностью расточки статора.
Задача изобретения - расширение функциональных возможностей, уменьшение массогабаритных показателей при неизменной мощности, а именно внешнего диаметра гибридного магнитопровода статора электромеханических преобразователей энергии, усиление межполюсного замыкания магнитного потока благодаря установке полого цилиндра на внешней стороне n подковообразных сердечников, набранных из ленты аморфного железа, и благодаря тому, что полый цилиндр выполнен из магнитомягкого материала, магнитная индукция насыщения которого выше, чем у материала n подковообразных сердечников, а также за счет интеграции системы охлаждения в гибридный магнитопровод статора электромеханических преобразователей энергии.
Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД электромеханических преобразователей энергии на 1-2%, а также повышенная линейная токовая нагрузка электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора.
Поставленная задача решается и указанный результат достигается тем, что в гибридном магнитопроводе статора электромеханических преобразователей энергии, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа и образующих пазы и зубцы гибридного магнитопровода статора электромеханических преобразователей энергии, обмотку, уложенную в пазах статора, согласно изобретению n подковообразных сердечников размещены таким образом, что между ними образуются аксиальные отверстия охлаждения для аксиальных трубок охлаждения, а по внешней стороне n подковообразных сердечников расположен полый цилиндр из магнитомягкого материала с магнитной индукцией насыщения выше более чем в 1,5 раз, чем у аморфного железа, при этом имеется возможность межполюсного замыкания магнитного потока.
Существо изобретения поясняется чертежом, на котором изображен поперечный разрез гибридного магнитопровода статора электромеханических преобразователей энергии.
Гибридный магнитопровод статора электромеханических преобразователей энергии содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа, которые образуют пазы 3 и зубцы 4 гибридного магнитопровода статора электромеханических преобразователей энергии, установленных в полый цилиндр из магнитомягкого материала 5. Также устройство содержит обмотку 6, уложенную в пазах 3 гибридного магнитопровода статора электромеханических преобразователей энергии, аксиальные трубки 7, установленные в пространстве между n подковообразными сердечниками 2 и полым цилиндром из магнитомягкого материала 5.
Гибридный магнитопровод статора электромеханических преобразователей энергии работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа и образующим пазы 3 и зубцы 4, протекает магнитный поток возбуждения. Также магнитный поток проходит по полому цилиндру из магнитомягкого материала 5, магнитная индукция насыщения которого больше индукции насыщения n подковообразных сердечников, набранных из ленты аморфного железа. Это делается для того, чтобы усилить межполюсное замыкание магнитного потока и тем самым уменьшить внешний диаметр гибридного магнитопровода статора электромеханических преобразователей энергии. При прохождении магнитного потока возбуждения по n подковообразным сердечникам 2 и полому цилиндру 5 по закону электромагнитной индукции в обмотке 6 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 6 начинает протекать ток, при этом создаются тепловые потери в обмотках 6, обусловленные током в обмотках 6 и их активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в гибридном магнитопроводе статора электромеханических преобразователей энергии, обусловленные величиной магнитного потока возбуждения, массой гибридного магнитопровода статора электромеханических преобразователей энергии и удельными потерями материала гибридного магнитопровода статора электромеханических преобразователей энергии, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и гибридным магнитопроводом статора электромеханических преобразователей энергии. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса при протекании хладагента по аксиальным трубкам 7, установленным в пространстве между подковообразными сердечниками 2. При этом, благодаря тому что аксиальные трубки 7 установлены в пространстве между подковообразными сердечниками 2 и полым цилиндром 5, достигается интеграция системы охлаждения в гибридном магнитопроводе статора электромеханических преобразователей энергии. Иными словами, аксиальные трубки 7 находятся в том месте, где концентрируются тепловые потоки от n подковообразных стержней 2 и полого цилиндра 5. За счет этого охлаждение гибридного магнитопровода статора электромеханических преобразователей энергии охлаждается интенсивней ближайшего аналога, т.е. достигается минимизация тепловых потерь в гибридном магнитопроводе статора электромеханических преобразователей энергии.
Итак, заявленное изобретение позволит расширить функциональные возможности, уменьшить массогабаритные показатели при неизменной мощности, усилить межполюсное замыкание магнитного потока, минимизировать тепловые потери в гибридном магнитопроводе статора электромеханических преобразователей энергии.
Также заявленное изобретение позволит повысить надежность, механическую прочность, энергоэффективность и КПД электромеханических преобразователей энергии на 1-2%, а также повысить линейную токовую нагрузку электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора.
название | год | авторы | номер документа |
---|---|---|---|
Магнитопровод статора электромеханических преобразователей энергии | 2017 |
|
RU2685420C1 |
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2570834C1 |
СТАТОР ЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ | 2023 |
|
RU2798501C1 |
Электродвигатель с беспазовым магнитопроводом статора из аморфного железа | 2018 |
|
RU2700656C1 |
Электрическая машина с модульными зубцами статора и обмотками из сверхпроводникового материала | 2020 |
|
RU2747884C1 |
ВЫСОКОСКОРОСТНОЙ МНОГОФАЗНЫЙ СИНХРОННЫЙ ГЕНЕРАТОР | 2015 |
|
RU2599056C1 |
АСИНХРОННЫЙ ТРЕХФАЗНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2018 |
|
RU2759161C2 |
Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов (варианты) | 2017 |
|
RU2659091C1 |
РОТОР ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ЭНЕРГИИ С ПОСТОЯННЫМИ МАГНИТАМИ (ВАРИАНТЫ) | 2015 |
|
RU2578131C1 |
РАДИАЛЬНЫЙ СИНХРОННЫЙ ГЕНЕРАТОР | 2013 |
|
RU2558661C2 |
Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД электромеханических преобразователей энергии на 1-2%, а также повышенная линейная токовая нагрузка электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора. Гибридный магнитопровод статора электромеханических преобразователей энергии содержит ротор, n подковообразных сердечников, набранных из ленты аморфного железа и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах магнитопровода статора. При этом n подковообразных сердечников размещены таким образом, что между ними образуются аксиальные отверстия охлаждения для аксиальных трубок охлаждения, а по внешней стороне n подковообразных сердечников расположен полый цилиндр из магнитомягкого материала с магнитной индукцией насыщения в 1,5 раз выше, чем у аморфного железа. При этом имеется возможность межполюсного замыкания магнитного потока. 1 ил.
Гибридный магнитопровод статора электромеханических преобразователей энергии, содержащий ротор, n подковообразных сердечников, набранных из ленты аморфного железа и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах магнитопровода статора, отличающийся тем, что n подковообразных сердечников размещены таким образом, что между ними образуются аксиальные отверстия охлаждения для аксиальных трубок охлаждения, а по внешней стороне n подковообразных сердечников расположен полый цилиндр из магнитомягкого материала с магнитной индукцией насыщения в 1,5 раз выше, чем у аморфного железа, при этом имеется возможность межполюсного замыкания магнитного потока.
US 6960860 B1, 01.11.2005 | |||
DE 102012207508 A1, 07.11.2013 | |||
US 5903082 A1, 11.05.1999 | |||
Статор электрической машины переменного тока и способ его изготовления | 1988 |
|
SU1663697A1 |
Магнитопровод статора однофазной асинхронной электрической машины | 1979 |
|
SU1023532A1 |
Статор электрической машины | 1982 |
|
SU1077013A1 |
Авторы
Даты
2018-02-13—Публикация
2017-05-10—Подача