Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов (варианты) Российский патент 2018 года по МПК H02K1/12 H01F3/06 

Описание патента на изобретение RU2659091C1

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известна торцевая электрическая машина (патент РФ №2246168, МПК Н02К 21/24, опубл. 10.02.2005 г.), включающая статор с обмоткой, закрепленный в корпусе, обращенный рабочими поверхностями к двум дискообразным роторам, расположенным с двух сторон от статора, установленным в подшипниках качения, статор выполнен из двух половин, в каждой из которых залит компаундом автономный зубцовый слой, распределенная обмотка в виде обмоточных модулей и ярмо, навитое из стальной ленты, установленных по разные стороны этого диска, причем с обеих сторон диска выполнены центрирующие пояски, на которых сцентрированы пластины обмоточных модулей, а на дисках двух роторов со стороны рабочих поверхностей статора выполнены по два центрирующих пояска, между которыми смонтированы постоянные магниты, полюсные наконечники которых имеют форму пластины с уменьшающимся к краям сечением.

Недостатком торцевой электрической машины является технологическая сложность в изготовлении, ограниченные функциональные возможности, высокие потери на перемагничивание и вихревые токи.

Известна торцевая электрическая машина (патент РФ №2313888, МПК Н02К 21/24, Н02К 21/12, Н02К 16/02, опубл. 27.12.2007 г.), содержащая статор, включающий диск, закрепленный в корпусе, и обмоточные модули, обращенные рабочими поверхностями к соответствующим дискообразным роторам с короткозамкнутыми обмотками, расположенным с двух сторон от статора и установленным в подшипниках качения, в диске статора выполнены прорези под обмоточные модули, края которых (отгибы) у двух соседних прорезей направлены в одну сторону диска, а у двух следующих прорезей - в противоположную, в которых обмоточные модули размещены таким образом, что между двумя пакетами пластин одного обмоточного модуля расположены по одному пакету пластин двух соседних обмоточных модулей с противоположной стороны диска, кроме того, на диске статора в промежутках между прорезями под обмоточные модули в радиальном направлении выполнены щелевидные прорези.

Недостатком торцевой электрической машины является технологическая сложность в изготовлении, ограниченные функциональные возможности, высокие потери на перемагничивание и вихревые токи.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является торцевая электрическая машина (А.с. СССР №462255, МПК Н02К 17/02, Н02К 5/04, опубл. 28.02.1975 г.), содержащая беспазовый статор, набранный из катушечных групп, активная часть которых выполнена из чередующихся между собой проводников обмотки и отделенных слоем изоляции листовых ферромагнитных элементов, остов статора, на котором укреплены активные части катушечных групп и два ротора, расположенные по разные стороны статора, причем остов статора выполнен из материала с большим электрическим сопротивлением и имеет посадочные места для установки в них катушечных групп.

Недостатком торцевой электрической машины является технологическая сложность в изготовлении, ограниченные функциональные возможности, высокие потери на перемагничивание и вихревые токи.

Задача изобретения - расширение функциональных возможностей беспазового магнитопровода статора электромеханических преобразователей энергии (ЭМПЭ) из нити аморфного железа, благодаря повышению выходной мощности при неизменных массогабаритных показателях, повышение эффективности и удельных показателей беспазового магнитопровода статора из нити аморфного железа в составе электромеханических преобразователей энергии.

Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД ЭМПЭ на 1-2%, а также снижение потерь в магнитопроводе создаваемыми полями лобовых частей ЭМПЭ.

Поставленная задача по первому варианту решается и указанный технический результат достигается тем, что в беспазовом магнитопроводе статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов, содержащим катушечные группы, установленные на беспазовом магнитопроводе статора, выполненного в виде полого цилиндра, во внутренней части которого смонтирован ротор, согласно изобретению полый цилиндр беспазового магнитопровода статора выполнен витым из тонкой нити аморфного железа, а на внутренние и внешние стенки полого цилиндра беспазового магнитопровода статора смонтированы катушечные группы в виде тороидальных обмоток.

Поставленная задача по второму варианту решается и указанный технический результат достигается тем, что в беспазовом магнитопроводе статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов, содержащим катушечные группы, установленные на беспазовом магнитопроводе статора, выполненного в виде полого цилиндра, во внутренней части которого смонтирован ротор, согласно изобретению полый цилиндр беспазового магнитопровода статора состоит из трех частей, средняя часть выполнена витой их ленты аморфного железа, а торцы беспазового магнитопровода выполнены витыми из тонкой нити аморфного железа, причем длина торцевых частей равна глубине проникновения магнитного потока, исходящего от лобовых частей ЭМПЭ, а на внутренние и внешние стенки полого цилиндра беспазового магнитопровода статора смонтированы катушечные группы в виде тороидальных обмоток.

Существо изобретения поясняется чертежами. На фиг. 1 и на фиг. 2 показан 3-D вид беспазового магнитопровода статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов, для первого и второго вариантов соответственно, на фиг. 3 показан продольный разрез предложенной конструкции по варианту 1, на фиг. 4 показан продольный разрез предложенной конструкции по варианту 2.

Предложенное устройство по первому варианту содержит (фиг. 2) полый цилиндр 1, который образует беспазовый магнитопровод статора, выполненный витым из тонкой нити аморфного железа, с целью минимизации потерь на вихревые токи в активной части и в лобовых частях беспазового магнитопровода статора. На внутренние и внешние стенки полого цилиндра 1 установлены катушечные группы 2, в виде тороидальных обмоток. Полый цилиндр 1 и катушечные группы 2 залиты эпоксидным клеем, для обеспечения механической прочности. Внутри полого цилиндра 1 установлен магнитоэлектрический ротор 3 электромеханического преобразователя энергии.

Предложенное устройство по второму варианту содержит (фиг. 3) полый цилиндр 1, который состоит из трех частей, средняя часть выполнена витой их ленты аморфного железа 2, а торцы беспазового магнитопровода выполнены витыми из тонкой нити аморфного железа 3. На внутренних и внешних стенках полого цилиндра беспазового магнитопровода статора установлены катушечные группы в виде тороидальных обмоток 4. Полый цилиндр 1, катушечные группы 4 залиты эпоксидным клеем, для обеспечения механической прочности. Внутри полого цилиндра 1 установлен магнитоэлектрический ротор 5 электромеханического преобразователя энергии.

Предложенное устройство по первому варианту работает следующим образом: при вращении ротора 3, по полому цилиндру 1, выполненному из нити аморфного железа, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в катушечных группах 2 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в катушечных группах 2 начинает протекать ток, при этом создаются тепловые потери в катушечных группах 2, обусловленные током в катушечных группах 2 и их активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в полом цилиндре 1, обусловленные величиной магнитного потока возбуждения, массой полого цилиндра 2 и удельными потерями материала нити аморфного железа - материала полого цилиндра 1, потери энергии на трение ротора 3 с воздухом, обусловленные частотой вращения ротора 3, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и полом роторе 3. Мощность, затрачиваемая на нагрев полого цилиндра вихревыми токами, снижает КПД электромеханических преобразователей энергии. Чтобы уменьшить мощность вихревых токов, в прототипе увеличивают электрическое сопротивление магнитопровода, для этого магнитопровод статора набирают из отдельных тонких листов, изолированных друг от друга с помощью лака или окалины. Однако путь вихревых токов, индуцируемых в тонких листах, пролегает по всему поперечному сечению листа. Для минимизации потерь на вихревые токи, т.е. минимизацию путей вихревых токов в магнитопроводе статора - полом цилиндре 1, полый цилиндр 1 выполняют витым из тонкой изолированной нити аморфного железа (фиг. 2). Кроме того, материал аморфное железо обладает минимально возможными удельными потерями на перемагничивание и вихревые токи (0,1-1 Вт/кг). В совокупности, тем самым снижают потери, создаваемые полями рассеяния в лобовых частях, и удельные потери в беспазовом магнитопроводе статора. Для обеспечения механической прочности, конструкцию из полого цилиндра 1 и катушечных групп 2 заливают эпоксидным клеем.

Предложенное устройство по второму варианту работает следующим образом: при вращении ротора 5, по полому цилиндру 1, выполненному из нити аморфного железа, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в катушечных группах 4 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в катушечных группах 4 начинает протекать ток, при этом создаются тепловые потери в катушечных группах 4, обусловленные наличием тока в них и их активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в полом цилиндре 1, обусловленные величиной магнитного потока возбуждения, массой полого цилиндра 1 и удельными потерями материала нити аморфного железа - материала полого цилиндра 1, потери энергии на трение ротора 5 с воздухом, обусловленные частотой вращения ротора 5, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и полом роторе 3. Мощность, затрачиваемая на нагрев полого цилиндра вихревыми токами, снижает КПД электромеханических преобразователей энергии. Чтобы уменьшить мощность вихревых токов, в прототипе увеличивают электрическое сопротивление магнитопровода, для этого магнитопровод статора набирают из отдельных тонких листов, изолированных друг от друга с помощью лака или окалины. Однако путь вихревых токов, индуцируемых в тонких листах, пролегает по всему поперечному сечению листа. Особенно негативное влияние вихревых токов, исходящих от полей рассеивания, присутствует в лобовых частях беспазового магнитопровода, выполненного в виде цилиндра 1. Негативное влияние вихревых токов в активное длине полого цилиндра 1 не столь высоко, как в лобовых частях, в частях с торцов полого цилиндра 1. Поэтому авторами предлагается разделить полый цилиндр 1 на три части: две торцевые 3 и среднюю часть 2. Средняя часть 2 выполнена витой их ленты аморфного железа, а торцы 3 беспазового магнитопровода (полого цилиндра 1) выполнены витыми из тонкой нити аморфного железа, с целью минимизации потерь на вихревые токи в лобовых частях полого цилиндра 1, причем длина торцевых частей 3 равна глубине проникновения магнитного потока, исходящего от лобовых частей ЭМПЭ, а уже на внутренние и внешние стенки полого цилиндра монтируются катушечные группы в виде тороидальных обмоток 4, вся описанная конструкция залита эпоксидным клеем, с целью обеспечения механической прочности.

Итак, заявляемое изобретение позволяет расширить функциональные возможности, повысить выходную мощность при неизменных массогабаритных показателях и повысить удельные показатели электромеханических преобразователей энергии и снизить негативное влияние вихревых токов на работу ЭМПЭ.

Похожие патенты RU2659091C1

название год авторы номер документа
Электродвигатель с беспазовым магнитопроводом статора из аморфного железа 2018
  • Исмагилов Флюр Рашитович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
  • Хисматуллин Камиль Амирович
RU2700656C1
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2006
  • Встовский Алексей Львович
  • Головин Михаил Петрович
  • Полошков Николай Евгеньевич
  • Головина Людмила Николаевна
  • Коков Сергей Александрович
RU2313888C1
Магнитопровод статора электромеханических преобразователей энергии 2017
  • Исмагилов Флюр Рашитович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
  • Веселов Алексей Михайлович
RU2685420C1
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА 2014
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
  • Якупов Айнур Махмутович
RU2581606C1
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Исмагилов Флюр Рашитович
  • Хайруллин Ирек Ханифович
  • Вавилов Вячеслав Евгеньевич
  • Бекузин Владимир Игоревич
RU2570834C1
БЕСПАЗОВЫЙ ЦИЛИНДРИЧЕСКИЙ СТАТОР ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2001
  • Казанский В.М.
RU2206168C2
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2010
  • Захаренко Андрей Борисович
RU2441308C1
БАНДАЖ ОБМОТКИ ЯКОРЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2006
  • Долгошеев Эдуард Антонович
  • Кравченко Александр Игнатьевич
  • Федоренко Римма Ивановна
RU2321134C2
Статор электрической машины 1981
  • Домбровский Валерий Вацлавович
SU1073844A1
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2011
  • Пучкин Евгений Константинович
RU2448404C1

Иллюстрации к изобретению RU 2 659 091 C1

Реферат патента 2018 года Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов (варианты)

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение кпд на 1-2%, а также снижение потерь в магнитопроводе создаваемыми полями лобовых частей. Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов содержит катушечные группы, установленные на беспазовом магнитопроводе статора, выполненного в виде полого цилиндра, во внутренней части которого смонтирован ротор. Полый цилиндр беспазового магнитопровода статора выполнен витым из тонкой нити аморфного железа, на внутренние и внешние стенки которого смонтированы катушечные группы в виде тороидальных обмоток. По второму варианту полый цилиндр беспазового магнитопровода статора состоит из трех частей. Средняя часть выполнена витой их ленты аморфного железа, а торцы беспазового магнитопровода выполнены витыми из тонкой нити аморфного железа. Длина торцевых частей равна глубине проникновения магнитного потока, исходящего от лобовых частей. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 659 091 C1

1. Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов, содержащий катушечные группы, установленные на беспазовом магнитопроводе статора, выполненного в виде полого цилиндра, во внутренней части которого смонтирован ротор, отличающийся тем, что полый цилиндр беспазового магнитопровода статора выполнен витым из тонкой нити аморфного железа, а на внутренние и внешние стенки полого цилиндра беспазового магнитопровода статора смонтированы катушечные группы в виде тороидальных обмоток.

2. Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов, содержащий катушечные группы, установленные на беспазовом магнитопроводе статора, выполненного в виде полого цилиндра, во внутренней части которого смонтирован ротор, отличающийся тем, что полый цилиндр беспазового магнитопровода статора состоит из трех частей, средняя часть выполнена витой из ленты аморфного железа, а торцы беспазового магнитопровода выполнены витыми из тонкой нити аморфного железа, причем длина торцевых частей равна глубине проникновения магнитного потока, исходящего от лобовых частей электромеханического преобразователя энергии, а на внутренние и внешние стенки полого цилиндра беспазового магнитопровода статора смонтированы катушечные группы в виде тороидальных обмоток.

Документы, цитированные в отчете о поиске Патент 2018 года RU2659091C1

МАГНИТОПРОВОД, В ЧАСТНОСТИ, ДЛЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ, И СПОСОБ ДЛЯ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДА ДЛЯ РОТОРА ИЛИ СТАТОРА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2012
  • Бауш Гюнтер
  • Фаасс Райнер
RU2560126C2
Статор электрической машины переменного тока 1989
  • Копылов Игорь Петрович
  • Олейников Александр Михайлович
  • Яковлев Александр Иванович
  • Яковлев Михаил Михайлович
  • Суворов Николай Иванович
SU1667192A1
Статор электрической машины 1982
  • Гусев Владимир Михайлович
  • Копылова Лидия Васильевна
  • Копылов Игорь Петрович
  • Пешков Изяслав Борисович
  • Пыдрин Анатолий Иванович
  • Чижков Юрий Павлович
SU1069067A1
Способ изготовления статора электрической машины 1989
  • Копылов Игорь Петрович
  • Суворов Николай Иванович
  • Олейников Александр Михайлович
  • Яковлев Александр Иванович
  • Яковлев Михаил Михайлович
SU1775803A1
Способ изготовления магнитопровода 1991
  • Кочкарев Владимир Семенович
  • Свечарник Давид Вениаминович
  • Ломаев Евгений Александрович
  • Соколов Борис Иванович
SU1814154A1
US 2012091852 A1, 19.04.2012.

RU 2 659 091 C1

Авторы

Исмагилов Флюр Рашитович

Хайруллин Ирек Ханифович

Вавилов Вячеслав Евгеньевич

Бекузин Владимир Игоревич

Айгузина Валентина Владимировна

Даты

2018-06-28Публикация

2017-07-17Подача