Способ крепления продуктивного пласта-коллектора газовой скважины Российский патент 2018 года по МПК E21B33/138 C09K8/42 

Описание патента на изобретение RU2645233C1

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа (ПХГ) и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор.

Известен способ крепления призабойной зоны пласта-коллектора скважины, который включает закачку в прискважинную зону пласта пористого тампонажного раствора, представляющего собой смесь кремнийсодержащего вещества, карбамидоформальдегидного концентрата, солей металлов и воды, с предварительной закачкой вспененного полимерного раствора, содержащего анионный водорастворимый полимер, поверхностно-активное вещество, карбамидоформальдегидный концентрат, соли металлов (см. патент РФ №2467156, кл. Е21В 33/13, 2012).

Недостаток известного способа состоит в том, что при его реализации на скважинах подземных хранилищ газа в режиме однократной обработки пласта-коллектора нельзя повысить продуктивность газовых скважин.

Проведенные патентные исследования показывают, что в патентно-информационных фондах ведущих стран мира отсутствуют технические решения, являющиеся наиболее близкими к предлагаемому способу обработки призабойной зоны продуктивного пласта-коллектора газовой скважины по достигаемому техническому результату.

Технический результат, на получение которого направлено предлагаемое изобретение, заключается в снижении водонасыщенности призабойной зоны пласта и повышении продуктивности эксплуатационных газовых скважин при однократной обработке пласта-коллектора.

Данный технический результат достигается за счет того, что способ крепления продуктивного пласта-коллектора газовой скважины заключается в том, что в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80% масс. модифицированного тетраэтоксисилана и 20-40% масс. водного раствора кислотного катализатора, и продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ, при этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа, после этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток.

Сущность предлагаемого изобретения поясняется данными, приведенными в Таблицах 1, 2 и 3, а также фиг. 1, 2 и 3. В Таблице 1 приведены результаты работ по креплению продуктивного пласта-коллектора на скважинах Северо-Ставропольского ПХГ (далее - ССПХГ) связующим составом при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора 80% масс. : 20% масс. В Таблице 2 показаны результаты работ по креплению продуктивного пласта-коллектора на скважинах ССПХГ связующим составом при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора 60% масс. : 40% масс. В Таблице 3 приведены данные сравнения фильтрационно-емкостных свойств образцов песчаника в результате химического крепления.

На фиг. 1 показана схема процесса цементирования газовой скважины, используемая при реализации предлагаемого способа. При этом на данной схеме показаны эксплуатационная колонна 1, насосно-компрессорные трубы (далее - НКТ) 2, пласт-коллектор 3, цементировочный агрегат 4 и компрессор 5.

На фиг. 2 приведены точки графика зависимости величины сцепления частиц песчаника в зависимости от значения растягивающего напряжения, которая получена для скважин ССПХГ. На фиг. 3 показаны точки графика зависимости величины угла внутреннего трения частиц песчаника в зависимости от значения растягивающего напряжения.

Принцип, лежащий в основе предлагаемого технического решения, заключается в том, что при реализации данного способа сохраняются фильтрационно-емкостные свойства пласта скважины по газу. В этом случае связующий состав используется для химического крепления пласта-коллектора газовой скважины с целью борьбы с выносом песка. Кроме того, связующий состав может применяться при проведении водоизоляционных, а также для ограничения водопритока в газовых и нефтяных скважинах. В этом случае скрепленный связующим составом материал не смачивается водой, оставаясь газо- и паропроницаемым. Всего по предлагаемому способу выполнено более 20 обработок.

Рассмотрим пример практической реализации предлагаемого способа при проведении работ по обработке продуктивного пласта-коллектора на Северо-Ставропольском ПХГ связующим составом, содержащим модифицированный тетраэтоксисилан и водный раствор катализатора (в данном случае используется неорганическая кислота), для крепления продуктивного пласта-коллектора.

Приготовление и закачка связующего состава осуществлялись с использованием стандартного оборудования, которое включает цементировочный агрегат 4 и компрессор 5 (см. фиг. 1). В данном случае проведение работ производилось в следующей последовательности:

1. При приготовлении связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора компоненты смешивали непосредственно перед закачкой состава в газовую скважину. Приготовление связующего состава на скважине производили в мерной емкости цементировочного агрегата 4 (см. фиг. 1). Емкость предварительно очищали, пропаривали и высушивали.

2. В модифицированный тетраэтоксисилан при перемешивании вводили водный раствор катализатора на основе неорганической кислоты. Смесь интенсивно перемешивали в течение 10-15 минут до получения однородной прозрачной жидкости.

3. Перед закачиванием связующего состава в колонну насосно-компрессорных труб 2 (см. фиг. 1) в качестве буфера закачивали раствор 2% соляной кислоты в количестве 1000 л и продавливали в пласт-коллектор 3 выхлопными газами от компрессора 5 до выравнивания давления в НКТ 2 и затрубном пространстве между эксплуатационной колонной 1 и НКТ 2 (фиг. 1). После выдержки скважины в покое в течение 10-15 минут отработали скважину на факельную линию с целью удаления продуктов реакции.

4. Приготовленный связующий состав закачивали насосом цементировочного агрегата 4 в насосно-компрессорные трубы 2. При этом закачку реагента, как и далее его продавку, в пласт-коллектор 3 производили при максимальном значении расхода насоса, не допуская роста давления закачивания выше допустимого давления на эксплуатационную колонну 1.

5. После этого связующий состав продавливали в пласт-коллектор 3 газом из шлейфа (для ПХГ) или выхлопными газами от компрессора 5 (фиг. 1). В этом случае газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа,

6. После выравнивания давления в трубном и затрубном пространствах закачку продавливающего агента продолжили в течение 3-4 часов. Затем скважину закрывали и выдерживали в состоянии покоя 48 часов для реагирования связующего состава.

7. По истечении времени проводили предварительную продувку скважины до чистого газа на факельную линию.

8. До окончательного реагирования связующего состава скважину закрывали и выдерживали в состоянии покоя 5 суток. После окончательного формирования структуры производили окончательную отработку скважины на факельную линию с допустимой депрессией. Вследствие того, что для продавливания связующего состава в пласт-коллектор 3 использовали газ, время отработки скважины было сокращено, что позволило уменьшить общее количество выбросов в окружающую среду.

Сведения о работе скважин ССПХГ после проведения их обработки связующим составом приведены в таблицах 1 и 2.

Согласно полученным результатам после выполненных работ выноса песка не наблюдалось, вырос дебит (который обозначается Q, тыс. м3) эксплуатационных скважин. В целом это свидетельствует о сцеплении слабосцементированного песка, увеличении прочности породы с сохранением фильтрационно-емкостных свойств пласта-коллектора.

Для определения механических и фильтрационно-емкостных свойств скрепленной породы до и после обработки связующим составом были проведены лабораторные и промысловые эксперименты, примеры реализации которых описаны ниже.

Рассмотрим, каким образом в лабораторных условиях осуществляется определение прочностных свойств слабосцементированных образцов песчаника.

В этом случае образцы для обработки связующим составом на основе модифицированного тетраэтоксисилана и водного раствора катализатора представлены песчаником мелкозернистым, алевритистым низко-глинистым, который относится к коллекторам 1 класса согласно классификации А.А. Ханина (см. кн. А.А. Ханин, Породы-коллекторы нефти и газа и их изучение, М., Недра, 1969, с. 234, таблица 18).

В металлическую полую цилиндрическую форму размерами - 50 мм высотой и 30 мм диаметром, смазанную солидолом, насыпали песок размером 0,2-0,4 мм и утрамбовывали в течение 1 ч. После утрамбовывания заливали в формы связующий раствор до полного смачивания песка. Затем формы сушили при температуре t=60-65°С, измеряли время, через которое происходило схватывание песка и отверждение образца.

Типичное время потери подвижности связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора (соотношение 80% масс. : 20% масс.) и закрепления песка при t=60°С составило 60 мин, при t=20°С - 150 мин. При уменьшении концентрации модифицированного тетраэтоксисилана и увеличении концентрации водного раствора катализатора в связующем составе время потери подвижности состава увеличивается и падает прочность образовавшегося геля.

Для проверки механических свойств связующего состава были проведены экспериментальные работы в лаборатории с использованием методики по исследованию прочностных свойств слабосцементированных образцов песчаника на индикаторе механических свойств ИСМ-190 «Викинг». Получаемые с использованием данной установки данные механические свойства связующего состава полностью соответствуют процедурам, регламентированным ГОСТ 24941-81 Породы горные. Методы определения механических свойств нагружением сферическими инденторами, М., 1981. Растягивающее напряжение образца σр, МПа, определяли из эксперимента по разрушению образца в процессе сжатия сферическими инденторами индикатора механических свойств ИСМ-190 «Викинг». Исходя из конкретных полученных при этом данных рассчитывали значения величины сцепления частиц песчаника и угла внутреннего трения.

На фиг. 2 и 3 представлены графики зависимостей значений величины сцепления частиц песчаника и величины угла внутреннего трения частиц песчаника в зависимости от значения растягивающего напряжения контрольного образца песчаника без обработки (БО) и после обработки образцов связующими составами с различным соотношением реагентов в смеси - составом 1 (С1), составом 2 (С2) и составом 3 (С3).

Состав 1 (С1) приготовлен при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 60% масс. на 40% масс., соответственно, состав 2 (С2) - при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 70% масс. на 30% масс., соответственно, и состав 3 (С3) - при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 80% масс. на 20% масс., соответственно.

Согласно результатам проведенной проверки механических свойств связующего состава (см. фиг. 2 и 3), после обработки образцов песчаника каждым из составов 1, 2 и 3 происходит рост сцепления и увеличение прочности на разрыв по сравнению с образцами песчаника до обработки этим же составом, и наблюдается тенденция к упрочнению структуры песчаника в результате обработки связующим составом.

В среднем увеличение происходит в 1,5-2,0 раза. Значение величины угла внутреннего трения испытанных образцов практически не зависит от растягивающего напряжения.

Определение фильтрационно-емкостных свойств образцов слабосцементированного песчаника в лабораторных условиях осуществляется следующим образом.

В качестве контрольного образца использовали образец, который не подвергался обработке. В металлическую форму размерами 50 мм высотой и 30 мм диаметром, смазанную солидолом, насыпали песок, утрамбовывали в течение 1 часа. Далее в форму заливали связующий состав до полного смачивания песка. Затем формы сушили при температуре t=60-65°С. После этого образец слабосцементированного песчаника помещали в кернодержатель модернизированного стенда УИПК (установка по исследованию проницаемости керна) в соответствии с ГОСТ 26450.0-85 - ГОСТ 26450.2-85 «Породы горные. Методы определения коллекторских свойств».

Затем производили поверхностный обжим образца давлением, значение которого равно 0,5 МПа (данное значение давления соответствует давлению герметизации образца в кернодержателе), а после этого через образец пропускали газ при разных значениях давления, величины которого изменялись в пределах значений от 0,01 МПа до 0,5 МПа. При проведении этих мероприятий определялось значение давления, при котором происходит разрушение образца. В реальных условиях функционирующей скважины это соответствует процессу выноса из нее песка.

Для исследования свойств обработанного связующим составом слабосцементированного песчаника были изготовлены три образца, полученные в результате использования составов при различном соотношении концентрации исходных реагентов в смеси:

- модифицированный тетраэтоксисилан 60% масс. и водный раствор катализатора 40% масс.;

- модифицированный тетраэтоксисилан 70% масс. и водный раствор катализатора 30% масс.;

- модифицированный тетраэтоксисилан 80% масс. и водный раствор катализатора 20% масс.

Для сравнения свойств образцов слабосцементированного песчаника до и после обработки связующим составом подготовлен контрольный образец, который не подвергался обработке. Для контрольного образца пористость составила 31,5%, проницаемость - 660 мД.

В Таблице 3 приведены данные по изменению пористости и проницаемости образцов слабосцементированного песчаника до и после обработки связующим составом с различным соотношением реагентов в смеси. Образцы слабосцементированного песчаника имеют разные значения пористости и проницаемости до обработки связующим составом, что связано с погрешностью измерения этих параметров и микронеоднородностью породы.

Приведенные результаты также показывают, что после обработки образцов №№1, 2 и 3 связующим составом на основе модифицированного тетраэтоксисилана и водного раствора катализатора вынос песка не наблюдался, фильтрационно-емкостные свойства изменились незначительно. Это свидетельствует о том, что использование предлагаемого связующего состава эффективно.

Однако время потери подвижности связующего состава с увеличением концентрации водного раствора катализатора и уменьшением концентрации модифицированного тетраэтоксисилана в составе значительно возросло. Оптимальным составом для проведения работ на скважине является состав, в котором соотношение модифицированного тетраэтоксисилана и водного раствора катализатора - 80% масс. : 20% масс.

Таким образом, предлагаемый способ позволяет с использованием физико-химических методов воздействия производить крепление пласта-коллектора скважины, повышая тем самым надежность эксплуатации газовых скважин и используя при этом незначительный объем связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора (например, в качестве водного раствора катализатора можно использовать выпускаемый промышленностью реагент «Тесил 133», ТУ 2435-006-98942484-2008, который производится компанией ООО «НПФ Техносилоксаны», г. Москва). При этом данный способ снижает водонасыщенность призабойной зоны пласта и повышает продуктивность эксплуатационных газовых скважин при однократной обработке пласта-коллектора. Он также позволяет увеличить продолжительность работы скважины, при которой вынос песка отсутствует и, кроме того, позволяет сократить затраты на многократные обработки газовых скважин с целью снижения выноса песка из скважины.

В результате предлагаемый способ позволяет решить проблемы выноса песка, что способствует увеличению дебита газовых скважин, обеспечению качественного функционирования скважин и уменьшению затрат на текущий и капитальный ремонт.

Похожие патенты RU2645233C1

название год авторы номер документа
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2006
  • Паникаровский Валентин Васильевич
  • Паникаровский Евгений Валентинович
  • Щуплецов Владимир Аркадьевич
  • Поляков Евгений Евгеньевич
RU2305765C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА-КОЛЛЕКТОРА ГАЗОВОЙ СКВАЖИНЫ 2014
  • Казарян Валентина Петровна
  • Оводов Сергей Олегович
  • Шулепин Сергей Александрович
  • Хвостова Вера Юрьевна
  • Шилов Евгений Михайлович
  • Свинцов Михаил Владимирович
RU2554656C1
Способ крепления призабойной зоны продуктивного пласта 2019
  • Бурханов Рамис Нурутдинович
  • Максютин Александр Валерьевич
RU2724828C1
Способ крепления призабойной зоны продуктивности пласта газовых скважин 2021
  • Гасумов Рамиз Алиджавад-Оглы
  • Гаврилов Андрей Александрович
  • Суковицын Владимир Александрович
RU2769942C1
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2013
  • Паникаровский Евгений Валентинович
  • Паникаровский Валентин Васильевич
  • Паникаровский Василий Валентинович
  • Сагидуллин Максим Александрович
RU2532935C1
СОСТАВ ДЛЯ УКРЕПЛЕНИЯ СЛАБОСЦЕМЕНТИРОВАННОГО ПОРИСТОГО ПЛАСТА 1997
  • Тахбатуллин Ф.Г.
  • Сахипов Ф.А.
  • Баранов А.А.
  • Родин В.И.
  • Каримов М.Ф.
  • Латыпов А.Г.
  • Рахманкулов Д.Л.
  • Злотский С.С.
RU2119041C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ 2011
  • Паникаровский Евгений Валентинович
  • Кустышев Денис Александрович
  • Паникаровский Валентин Васильевич
  • Кустышев Александр Васильевич
  • Огибенин Валерий Владимирович
  • Шуплецов Владимир Аркадьевич
  • Паникаровский Василий Валентинович
  • Сагидуллин Максим Александрович
RU2477787C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СЛАБОЦЕМЕНТИРОВАННОГО ТЕРРИГЕННОГО ПЛАСТА В УСЛОВИЯХ АНОМАЛЬНО НИЗКОГО ПЛАСТОВОГО ДАВЛЕНИЯ 2013
  • Кустышев Александр Васильевич
  • Сингуров Александр Александрович
  • Паникаровский Евгений Валентинович
  • Кустышев Денис Александрович
  • Джанагаев Вадим Славикович
  • Попова Жанна Сергеевна
RU2528803C1
Способ интенсификации притока газовых скважин 2022
  • Пятахин Михаил Валентинович
  • Шулепин Сергей Александрович
  • Оводов Сергей Олегович
RU2788934C1
Способ проведения обработки газовых скважин подземных хранилищ газа 2019
  • Казарян Валентина Петровна
  • Шулепин Сергей Александрович
RU2726089C1

Иллюстрации к изобретению RU 2 645 233 C1

Реферат патента 2018 года Способ крепления продуктивного пласта-коллектора газовой скважины

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления продуктивного пласта-коллектора газовой скважины в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80 мас.% модифицированного тетраэтоксисилана и 20-40 мас.% водного раствора кислотного катализатора. Продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ. При этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа. После этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток. Техническим результатом является снижение водонасыщенности призабойной зоны пласта и повышение продуктивности эксплуатационных газовых скважин при однократной обработке пласта-коллектора. 3 ил., 3 табл.

Формула изобретения RU 2 645 233 C1

Способ крепления продуктивного пласта-коллектора газовой скважины, заключающийся в том, что в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80 мас.% модифицированного тетраэтоксисилана и 20-40 мас.% водного раствора кислотного катализатора, и продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ, при этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа, после этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток.

Документы, цитированные в отчете о поиске Патент 2018 года RU2645233C1

СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2010
  • Волков Владимир Анатольевич
  • Беликова Валентина Георгиевна
RU2467156C2
СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ВОД В СКВАЖИНАХ 2003
  • Волков В.А.
  • Беликова В.Г.
  • Пелевин А.М.
  • Новиков Г.А.
  • Майоров Н.А.
  • Никифоров А.А.
RU2251615C2
СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В НЕФТЯНЫХ СКВАЖИНАХ 2012
  • Демахин Анатолий Григорьевич
  • Демахин Сергей Анатольевич
RU2490295C1
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2006
  • Паникаровский Валентин Васильевич
  • Паникаровский Евгений Валентинович
  • Щуплецов Владимир Аркадьевич
  • Поляков Евгений Евгеньевич
RU2305765C1
US 4157306 A1, 05.06.1979.

RU 2 645 233 C1

Авторы

Казарян Валентина Петровна

Оводов Сергей Олегович

Хвостова Вера Юрьевна

Шилов Евгений Михайлович

Свинцов Михаил Владимирович

Даты

2018-02-19Публикация

2016-10-03Подача