Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов быстродействующих сенсоров (ускорения, давления, радиации и т.п.) в напряжение.
Классические и специальные измерительные мосты [1-41] являются базовым элементом различных систем измерения параметров физических величин. В качестве одного или нескольких элементов моста могут применятся фотоприемные устройства, тензорезисторы, датчики радиации, СВЧ-излучения и другие типы сенсоров.
Одной из тенденций в проектировании современных измерительных систем является повышение быстродействия. Однако классический измерительный мост может (в ряде случаев) быть достаточно инерционным, что связано с наличием паразитных емкостей в его измерительной диагонали. Это емкость образуется за счет собственных емкостей сенсоров, их соединительных проводников, а также входных емкостей преобразователей сигналов измерительной диагонали (операционных усилителей и т.п.).
Ближайшим прототипом заявляемого устройства является измерительный мост по патентной заявке US 2001/0035758. Он содержит (фиг. 1) первый 1 измерительный резистор, включенный между общей шиной источника питания 2 и первым 3 выводом измерительной диагонали, второй 4 измерительный резистор, подключенный между первым 3 выводом измерительной диагонали и источником питания 5, третий 6 измерительный резистор, включенный между источником питания 5 и вторым 7 выводом измерительной диагонали, четвертый 8 измерительный резистор, включенный между вторым 7 выводом измерительной диагонали и общей шиной источника питания 2, первый 9 и второй 10 паразитные конденсаторы, связанные соответственно с первым 3 и вторым 7 выводами измерительной диагонали.
Существенный недостаток измерительного моста-прототипа состоит в том, что он имеет низкое быстродействие из-за влияния на переходные процессы паразитных емкостей, связанных с измерительной диагональю.
Основная задача предлагаемого изобретения состоит в повышении быстродействия - уменьшении времени переходного процесса при скачкообразном изменении сопротивлений резисторов, образующих структуру моста.
Поставленная задача достигается тем, что в измерительном мосту фиг. 1, содержащем первый 1 измерительный резистор, включенный между общей шиной источника питания 2 и первым 3 выводом измерительной диагонали, второй 4 измерительный резистор, подключенный между первым 3 выводом измерительной диагонали и источником питания 5, третий 6 измерительный резистор, включенный между источником питания 5 и вторым 7 выводом измерительной диагонали, четвертый 8 измерительный резистор, включенный между вторым 7 выводом измерительной диагонали и общей шиной источника питания 2, первый 9 и второй 10 паразитные конденсаторы, связанные соответственно с первым 3 и вторым 7 выводами измерительной диагонали, предусмотрены новые элементы и связи - в схему введены первый 11 и второй 12 инвертирующие усилители напряжения, первый 13 и второй 14 корректирующие конденсаторы, причем вход первого 11 инвертирующего усилителя напряжения подключен ко второму 7 выводу измерительной диагонали, а первый 13 корректирующий конденсатор включен между выходом первого 11 инвертирующего усилителя напряжения и первым 3 выводом измерительной диагонали, вход второго 12 инвертирующего усилителя напряжения соединен с первым 3 выводом измерительной диагонали, а второй 14 корректирующий конденсатор включен между выходом второго 12 инвертирующего усилителя напряжения и вторым 7 выводом измерительной диагонали.
На фиг. 1 показана схема измерительного моста-прототипа для двух классических случаев подключения к нему источников питания - в виде источника напряжения (фиг. 1а) или в виде источника тока (фиг. 1б).
На фиг. 2 показана схема заявляемого измерительного моста с повышенным быстродействием в соответствии с формулой изобретения.
На фиг. 3 приведена заявляемая схема измерительного моста фиг. 2 в среде PSpice на моделях интегральных транзисторов базового матричного кристалла АБМК_1.3 (АБМК_2.1).
На фиг. 4 представлена осциллограмма выходных напряжений предлагаемого измерительного моста фиг. 3 (мелкий масштаб) при отсутствии емкостей коррекции (С13=С14=Ck=1фΦ).
На фиг. 5 приведена осциллограмма переднего фронта выходных напряжений предлагаемого измерительного моста фиг. 3 при изменении емкостей коррекции C13=C14=Ck в диапазоне 0÷20пΦ.
На фиг. 6 показана осциллограмма заднего фронта выходных напряжений предлагаемого измерительного моста фиг. 3 при изменении емкостей коррекции C13=C14=Ck в диапазоне 0÷20пΦ.
На фиг. 7 приведена осциллограмма дифференциального выходного напряжения (V(Out1)-V(Out2)) измерительного моста фиг. 3 при C13=C14=Ck=1фΦ (мелкий масштаб).
На чертеже фиг. 8 представлена осциллограмма переднего фронта дифференциального выходного напряжения (V(Out1)-V(Out2)) измерительного моста фиг. 3 при C13=C14=Ck=0÷20пΦ (крупный масштаб).
На фиг. 9 показана осциллограмма заднего фронта дифференциального выходного напряжения (V(Out1)-V(Out2)) измерительного моста фиг. 3 при C13=C14=Ck=0÷20 пΦ.
На фиг. 10 представлена частотная зависимость коэффициента преобразования недифференциального тока элементов G2 (G1) в не дифференциальное выходное напряжение (V(OUT1)/I(G2)) измерительного моста фиг. 3 при C13=C14=Ck=0÷20пΦ.
На фиг. 11 приведена частотная зависимость коэффициента преобразования дифференциального тока элементов G1, G2 в дифференциальное выходное напряжение uвых.дифф=(IG1-IG2)⋅(G2+G1) измерительного моста фиг. 3 при C13=C14=Ck=0÷20пΦ.
Измерительный мост с повышенным быстродействием фиг. 2 содержит первый 1 измерительный резистор, включенный между общей шиной источника питания 2 и первым 3 выводом измерительной диагонали, второй 4 измерительный резистор, подключенный между первым 3 выводом измерительной диагонали и источником питания 5, третий 6 измерительный резистор, включенный между источником питания 5 и вторым 7 выводом измерительной диагонали, четвертый 8 измерительный резистор, включенный между вторым 7 выводом измерительной диагонали и общей шиной источника питания 2, первый 9 и второй 10 паразитные конденсаторы, связанные соответственно с первым 3 и вторым 7 выводами измерительной диагонали. В схему введены первый 11 и второй 12 инвертирующие усилители напряжения, первый 13 и второй 14 корректирующие конденсаторы, причем вход первого 11 инвертирующего усилителя напряжения подключен ко второму 7 выводу измерительной диагонали, а первый 13 корректирующий конденсатор включен между выходом первого 11 инвертирующего усилителя напряжения и первым 3 выводом измерительной диагонали, вход второго 12 инвертирующего усилителя напряжения соединен с первым 3 выводом измерительной диагонали, а второй 14 корректирующий конденсатор включен между выходом второго 12 инвертирующего усилителя напряжения и вторым 7 выводом измерительной диагонали.
Рассмотрим работу сбалансированного измерительного моста фиг. 2 для случая, когда сопротивления второго 4 и третьего 6 измерительных резисторов изменяются одинаково и противофазно, что обеспечивает одинаковое, но противофазное изменение напряжений на первом 3 и втором 7 выводах измерительной диагонали. Причем комплексы токов через второй 4 и третий 6 измерительные резисторы равны: .
Наличие первого 9 и второго 10 паразитных конденсаторов не приводит в схеме моста-прототипа к быстрому изменению uвых.1(t) и uвых.2(t) и вызывает медленный перезаряд данных конденсаторов с соответствующими токами Is4 и Is6.
В предлагаемом измерительном мосте напряжение uвых.1 передается через второй 12 инвертирующий усилитель напряжения на левый вывод второго 14 корректирующего конденсатора, что вызывает ток . За счет выбора Ky1 и C14 можно обеспечить равенство . Как следствие, в заявляемой схеме в узел 7 (второй вывод измерительной диагонали) добавляется дополнительный перезаряжающий ток I14=I10, что вызывает более быстрое изменение uвых.2.
Аналогичные выводы можно сделать и для первого 3 вывода измерительной диагонали.
Как показывает компьютерное моделирование заявляемой схемы измерительного моста, за счет введения новых элементов, его быстродействие увеличивается на 1-2 порядка.
Таким образом, при включении емкостей коррекции первого 13 и второго 14 корректирующих конденсаторов, в соответствии с формулой изобретения, время установления переходного процесса в предлагаемом измерительном мосте уменьшается на один - два порядка.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент DE 3142325.
2. Патент EP 0078898.
3. Патент US 4.528.499.
4. Патент JP 58108466.
5. Патентная заявка US 2009/167432.
6. Патент US 4.595.884.
7. Патент US 4.484.146, fig. 1.
8. Патентная заявка US 2005/0212598 fig. 6.
9. Патент Канады 1.268.270.
10. Патент US 4.229.692.
11. Патент US 4.484.146.
12. Патент US 4.063.447.
13. Патент US 8.330.537.
14. Патентная заявка US 2001/0035758.
15. Патент EP 1703262.
16. Патент EP 2587270.
17. Патент US 4.611.163.
18. Патент US 4.595.889.
19. Патент US 5.159.277.
20. Патент US 4.639.611.
21. Патент US 4.605.905.
22. Патент EP 1416286.
23. Патент US 5.631.602.
24. Патент EP 0009231.
25. Патент RU 2171473.
26. Патент RU 2118226.
27. Патент RU 2071065.
28. Патент RU 2265229.
29. Патент RU 2397500.
30. Патент RU 2344429.
31. Патент RU 2335776
32. Патент RU 2327174.
33. Патент RU 2326389.
34. Патент RU 2376608.
35. Патент SU 1830463.
36. Патент RU 2327174.
37. Патент RU 2284530.
38. Патент RU 2238570.
39. Патент RU 2335776.
40. Патент RU 2171473.
41. Патент RU 2388000.
название | год | авторы | номер документа |
---|---|---|---|
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ | 2013 |
|
RU2541723C1 |
ШИРОКОПОЛОСНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ АТТЕНЮАТОР | 2013 |
|
RU2523951C1 |
БЫСТРОДЕЙСТВУЮЩИЙ АТТЕНЮАТОР ДЛЯ ВХОДНЫХ ЦЕПЕЙ АНАЛОГО-ЦИФРОВЫХ ИНТЕРФЕЙСОВ | 2013 |
|
RU2530262C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ДРАЙВЕР ДИФФЕРЕНЦИАЛЬНОЙ ЛИНИИ СВЯЗИ | 2013 |
|
RU2515543C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ АТТЕНЮАТОР С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ЧАСТОТ | 2013 |
|
RU2535180C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ДИФФЕРЕНЦИРУЮЩИМИ ЦЕПЯМИ КОРРЕКЦИИ В МОСТОВОМ ВХОДНОМ ДИФФЕРЕНЦИАЛЬНОМ КАСКАДЕ | 2023 |
|
RU2797168C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ДАТЧИК ФИЗИЧЕСКИХ ВЕЛИЧИН С ПОТЕНЦИАЛЬНЫМ ВЫХОДОМ | 2013 |
|
RU2517682C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ИСТОКОВЫЙ ПОВТОРИТЕЛЬ НАПРЯЖЕНИЯ | 2013 |
|
RU2536671C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С МОСТОВЫМ ВХОДНЫМ ДИФФЕРЕНЦИАЛЬНЫМ КАСКАДОМ | 2022 |
|
RU2791274C1 |
ИЗБИРАТЕЛЬНЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ | 2012 |
|
RU2504073C1 |
Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение. Технический результат - повышение быстродействия. Измерительный мост с повышенным быстродействием содержит первый (1), второй (4), третий (6) и четвертый (8) измерительные резисторы, первый (9) и второй (10) паразитные конденсаторы, связанные соответственно с первым (3) и вторым (7) выводами измерительной диагонали. В схему введены первый (11) и второй (12) инвертирующие усилители напряжения, первый (13) и второй (14) корректирующие конденсаторы, причем вход первого (11) инвертирующего усилителя напряжения подключен ко второму (7) выводу измерительной диагонали, а первый (13) корректирующий конденсатор включен между выходом первого (11) инвертирующего усилителя напряжения и первым (3) выводом измерительной диагонали, вход второго (12) инвертирующего усилителя напряжения соединен с первым (3) выводом измерительной диагонали, а второй (14) корректирующий конденсатор включен между выходом второго (12) инвертирующего усилителя напряжения и вторым (7) выводом измерительной диагонали. 11 ил.
Измерительный мост с повышенным быстродействием, содержащий первый (1) измерительный резистор, включенный между общей шиной источника питания (2) и первым (3) выводом измерительной диагонали, второй (4) измерительный резистор, подключенный между первым (3) выводом измерительной диагонали и источником питания (5), третий (6) измерительный резистор, включенный между источником питания (5) и вторым (7) выводом измерительной диагонали, четвертый (8) измерительный резистор, включенный между вторым (7) выводом измерительной диагонали и общей шиной источника питания (2), первый (9) и второй (10) паразитные конденсаторы, связанные соответственно с первым (3) и вторым (7) выводами измерительной диагонали, отличающийся тем, что в схему введены первый (11) и второй (12) инвертирующие усилители напряжения, первый (13) и второй (14) корректирующие конденсаторы, причем вход первого (11) инвертирующего усилителя напряжения подключен ко второму (7) выводу измерительной диагонали, а первый (13) корректирующий конденсатор включен между выходом первого (11) инвертирующего усилителя напряжения и первым (3) выводом измерительной диагонали, вход второго (12) инвертирующего усилителя напряжения соединен с первым (3) выводом измерительной диагонали, а второй (14) корректирующий конденсатор включен между выходом второго (12) инвертирующего усилителя напряжения и вторым (7) выводом измерительной диагонали.
US 8179121 B2 15.05.2012 | |||
WO 2005045449 A1 19.05.2005 | |||
US 6417678 B2 09.07.2002 | |||
Автокомпенсатор | 1977 |
|
SU661357A1 |
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ | 2013 |
|
RU2541723C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ | 2016 |
|
RU2621291C1 |
Авторы
Даты
2018-02-28—Публикация
2016-11-30—Подача