Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком Российский патент 2018 года по МПК G01K13/00 G01J5/60 G01K15/00 

Описание патента на изобретение RU2646426C1

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА), основанным на оптической регистрации, и может быть использовано для определения температуры поверхности ЛА при исследованиях в области аэродинамики, баллистики и т.д.

Известен «Способ определения поля температур нагретой поверхности высокоскоростного ЛА» (патент №2330249, МПК G01J 5/00 (2006.01), опубл. 27.07.2008, бюл. №21). В способе производят видеосъемку исследуемой поверхности в видимом или инфракрасном диапазоне спектра излучения, преобразуют изображение в цветовые компоненты в цифровой форме, синхронно со съемкой измеряют температуру, например, термопарами, в нескольких эталонных точках исследуемой поверхности с разной температурой и формируют зависимости, связывающие температуру и значения цветовых компонент или их комбинаций, а температуру в других точках исследуемой поверхности определяют по этим зависимостям.

Основным недостатком данного способа является изменение конструкции ЛА для установки средств измерения температуры, тем более что сами термопары для повышения точности измерений должны быть на поверхности исследуемого участка, съемка которого осуществляется, что приведет к изменению условий обтекания набегающим потоком данного участка. Данный способ практически не применим для модельных испытаний ЛА, находящихся в свободном полете, вследствие сложности установки средств измерения температуры, оснащенных носителем информации для сохранения данных о температуре и синхронизации этих данных с моментом съемки поверхности ЛА. Указанный способ выбран в качестве прототипа.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в создании способа определения температуры поверхности ЛА при обтекании набегающим потоком, как в статических, так и в летных испытаниях.

Технический результат при использовании заявленного способа заключается в определении температуры поверхности ЛА без изменения его конструкции, в результате повышение точности и упрощение испытаний, а для модельных испытаний, проводимых на аэробаллистических трассах: получение новых данных о режимах нагрева поверхности компактных ЛА при свободном сверхзвуковом полете.

Данный технический результат достигается за счет того, что в заявляемом способе определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком, включающим съемку исследуемой поверхности, преобразование цветового изображения исследуемой поверхности в цветовые компоненты в цифровой форме, сопоставление с их эталонными значениями по температуре в градусах и определение температуры на поверхности ЛА по соответствующим эталонным значениям, в отличие от прототипа, эталонные значения получают путем съемки нагреваемой поверхности диска, выполненного из материала, аналогичного материалу исследуемой поверхности ЛА по величине температуры плавления и шероховатости поверхности, в режиме, соответствующем режиму измерения температуры поверхности ЛА, с последующим преобразованием изображения в цветовые компоненты, соответствующие градации серого цвета, в зависимости от изменения температуры, термопар, установленных с обратной стороны диска относительно его поверхности, нагреваемой внешним источником тепла.

В результате использования всей совокупности признаков заявляемого способа определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком не требуется какая-либо доработка конструкции ЛА для установки регистрирующего оборудования.

Заявляемый способ поясняется следующими фигурами: на фиг. 1 схематично изображено устройство калибровки фото или видеокамеры, на фиг. 2 - эталонные значения температур (температурный градиент) в зависимости от изменения значений температуры от центра к периферии диска (Тцт, Тст и Тпт, соответственно), на фиг. 3 - нагретый диск с термопарами, установленными в выделенных зонах (центральной, средней и периферийной соответственно), которые использовались для измерения температуры.

Заявляемый способ определения температуры нагретой поверхности летательного аппарата (ЛА) при сверхзвуковом обтекании набегающим потоком осуществляется следующим образом.

Фото или видеокамерой 3 (например, цифровой камерой Frame) производят видеосъемку исследуемой поверхности ЛА при обтекании набегающим потоком, как в статических, так и в летных испытаниях.

Эталонные значения (температурный градиент) цветовых компонент по температуре в градусах получают в результате калибровки камеры 3 путем видеосъемки нагреваемой внешним источником тепла (в данном примере выполнения, при помощи размещенной соосно диску 1 газовой горелки) поверхности диска 1, выполненного из материала, аналогичного материалу исследуемой поверхности ЛА по величине температуры плавления и шероховатости поверхности, в режиме, соответствующем режиму съемки поверхности ЛА (величина экспозиции, чувствительность матрицы камеры 3, параметры объектива, расстояние до ЛА и наличие или отсутствие фоновой подсветки 4).

При помощи термопар 2, установленных с обратной стороны диска 1 (относительно поверхности, нагреваемой внешним источником 5 тепла), измеряют значения температур нагретого диска 1 от центра к его периферии.

Полученные изображения цифровой камеры 3 в графическом редакторе преобразуют в цветовые компоненты, соответствующие градации серого цвета в зависимости от изменения значений температуры (фиг. 2).

В результате сопоставления полученных при съемке изображений с эталонными их значениями по температуре в градусах определяют температуру поверхности ЛА при сверхзвуковом обтекании набегающим потоком по соответствующим эталонным значениям.

Технический результат при использовании заявленного способа заключается в определении температуры поверхности ЛА без изменения его конструкции, повышение точности и упрощение испытаний, а для модельных испытаний, проводимых на аэробаллистических трассах: получение новых данных о режимах нагрева поверхности компактных ЛА при свободном сверхзвуковом полете.

Похожие патенты RU2646426C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛЯ ТЕМПЕРАТУР НАГРЕТОЙ ПОВЕРХНОСТИ ВЫСОКОСКОРОСТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2006
  • Перницкий Сергей Иосифович
  • Фролкина Людмила Вениаминовна
RU2330249C1
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ НАГРЕТЫХ ТЕЛ 2003
  • Тюрин В.А.
  • Алексеев П.Л.
RU2238529C1
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ СВЕРХЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Миронов Сергей Григорьевич
  • Маслов Анатолий Александрович
  • Цырюльников Иван Сергеевич
RU2559193C1
СПОСОБ ПОЛУЧЕНИЯ УДАРНО СЖАТОГО СЛОЯ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Калашников Евгений Валентинович
RU2590893C1
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА 1990
  • Юрьев А.С.
  • Борзов В.Ю.
  • Москалец Г.Н.
  • Рыбка И.В.
  • Савищенко Н.П.
RU2173657C2
Способ тепловых испытаний натурных керамических элементов летательных аппаратов 2018
  • Райлян Василий Семенович
  • Русин Михаил Юрьевич
  • Малахов Алексей Владимирович
  • Фокин Василий Иванович
  • Гусев Руслан Михайлович
RU2690048C1
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Новиков Олег Николаевич
RU2283794C2
Способ управления обтеканием сверхзвукового летательного аппарата 2015
  • Миронов Сергей Григорьевич
  • Цырюльников Иван Сергеевич
RU2621195C1
СПОСОБ УПРАВЛЕНИЯ УРОВНЕМ ЗВУКОВОГО УДАРА ОТ ЧАСТЕЙ ЛЕТАТЕЛЬНОГО АППАРАТА (ЛА) 2014
  • Потапкин Анатолий Васильевич
  • Москвичев Дмитрий Юрьевич
RU2567106C1
СПОСОБ СНИЖЕНИЯ УРОВНЯ ЗВУКОВОГО УДАРА ЛЕТАТЕЛЬНОГО АППАРАТА (ЛА) 2012
  • Потапкин Анатолий Васильевич
  • Москвичев Дмитрий Юрьевич
RU2520591C1

Иллюстрации к изобретению RU 2 646 426 C1

Реферат патента 2018 года Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой поверхности в цветовые компоненты в цифровой форме, сопоставление с их эталонными значениями по температуре в градусах и определение температуры на поверхности ЛА по соответствующим эталонным значениям, которые получают путем видеосъемки нагреваемой поверхности диска, выполненного из материала, аналогичного материалу исследуемой поверхности ЛА по величине температуры плавления и шероховатости поверхности, в режиме, соответствующем режиму съемки поверхности ЛА, с последующим преобразованием изображения в цветовые компоненты, соответствующие градации серого цвета, в зависимости от изменения температуры, термопар, установленных с обратной стороны диска относительно его поверхности, нагреваемой внешним источником тепла. Технический результат - повышение точности и упрощение испытаний летательного аппарата без изменения его конструкции, а для модельных испытаний, проводимых на аэробаллистических трассах: получение новых данных нагрева поверхности компактных ЛА при свободном сверхзвуковом полете. 3 ил.

Формула изобретения RU 2 646 426 C1

Способ определения температуры нагретой поверхности летательного аппарата (ЛА) при сверхзвуковом обтекании набегающим потоком, включающий видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой поверхности в цветовые компоненты в цифровой форме, сопоставление с их эталонными значениями по температуре в градусах и определение температуры на поверхности ЛА по соответствующим эталонным значениям, отличающийся тем, что эталонные значения получают путем видеосъемки нагреваемой поверхности диска, выполненного из материала, аналогичного материалу исследуемой поверхности ЛА по величине температуры плавления и шероховатости поверхности, в режиме, соответствующем режиму съемки поверхности ЛА, с последующим преобразованием изображения в цветовые компоненты, соответствующие градации серого цвета, в зависимости от изменения значений температуры от центра к периферии диска, измеренных при помощи термопар, установленных с обратной стороны диска относительно поверхности, нагреваемой внешним источником тепла.

Документы, цитированные в отчете о поиске Патент 2018 года RU2646426C1

СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛЯ ТЕМПЕРАТУР НАГРЕТОЙ ПОВЕРХНОСТИ ВЫСОКОСКОРОСТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2006
  • Перницкий Сергей Иосифович
  • Фролкина Людмила Вениаминовна
RU2330249C1
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ НАГРЕТЫХ ТЕЛ 2003
  • Тюрин В.А.
  • Алексеев П.Л.
RU2238529C1
Телевизионный цветовой пирометр 1978
  • Домаренок Николай Иванович
  • Достанко Анатолий Павлович
SU983471A1
ТЕПЛОВИЗИОННАЯ СИСТЕМА ДЛЯ ПРОВЕДЕНИЯ НАРУЖНОЙ ТЕПЛОВИЗИОННОЙ СЪЕМКИ 2014
  • Вавилов Владимир Платонович
  • Ширяев Владимир Васильевич
  • Чулков Арсений Олегович
  • Лариошина Ирина Анатольевна
RU2575798C1
ФАЗОВЫЙ КОМПАРАТОР 1972
SU420108A1
JP 2005233731 A, 02.09.2005.

RU 2 646 426 C1

Авторы

Герасимов Сергей Иванович

Тотышев Константин Валерьевич

Фомкин Анатолий Павлович

Хорошко Алексей Николаевич

Даты

2018-03-05Публикация

2017-01-11Подача