Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из отсеков КА в условиях орбитального полета или в процессе вакуумных испытаний.
Известен способ обнаружения на орбите негерметичности корпуса космического аппарата, заключающийся в том, что изолируют отдельные участки корпуса КА, формируя вспомогательные контрольные полости с образованием в каждой из них проходного сечения, перекрываемого ворсинками волокнистого чувствительного элемента, создают давление воздуха внутри корпуса и о наличии негерметичности судят по движению ворсинок, ведя киносъемку процесса (см. патент РФ №2152015, 27.06.2000 г., кл. G01M 3/04).
Недостатками данного способа являются: длительность поиска места негерметичности, так как требуется определенное время для процесса крепления к корпусу КА заглушек, при помощи которых образуют контрольные полости, и для заполнения контрольных полостей выходящим из корпуса КА воздухом, а также относительно невысокая точность обнаружения места течи.
Известен также способ контроля герметичности корпуса КА, при котором создают давление воздуха внутри КА и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, осуществляя обдув частей корпуса КА пробным мелкодисперсным веществом, а обнаружение локальной негерметичности производят посредством визуализации изменения линий тока пробного мелкодисперсного вещества под воздействием выходящего из корпуса воздуха, проводя киносъемку процесса (см. патент РФ №2321835, 01.11.2006 г., МПК G01M 3/00).
Основными недостатками указанного способа являются сложность его осуществления и большое количество оборудования, необходимого для его реализации, а также возникновение облака дисперсных частиц вокруг КА в условиях орбитального полета.
Наиболее близким по технической сути к предлагаемому изобретению является способ контроля герметичности корпуса космического аппарата в вакууме, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве которой применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью (см. патент РФ №2502972, 27.03.2012 г., МПК G01M 3/00).
Основными недостатками указанного способа являются ограничения порога чувствительности измерений, накладываемые минимальными размерами индикаторных дискретных частиц.
Задачей предлагаемого изобретения является создание способа контроля герметичности корпуса космического аппарата, при котором техническим результатом будет являться снижение величины порога чувствительности измерений и повышение точности определения параметров локальной негерметичности в условиях вакуума.
Этот технический результат в способе контроля герметичности корпуса космического аппарата, заключающемся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве которой применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью, достигается тем, что в качестве чувствительной среды применяют индикаторные пористые частицы и регулируют чувствительность измерений подбором пористости и истинной плотности индикаторных пористых частиц.
Сущность изобретения поясняется схемой, показанной на фиг. 1 и фиг. 2. Способ по предлагаемому изобретению осуществляется следующим образом. В случае выявления факта негерметичности корпуса КА по каким-либо косвенным показателям, производят поиск локальной негерметичности на поверхности корпуса КА (поз. 3, фиг. 1 и фиг. 2) устройством, состоящим из источника (поз. 2, фиг. 1 и фиг. 2), запускающего индикаторные пористые частицы (поз. 1, фиг. 1 и фиг. 2), меняющие свои траектории под воздействием газового потока (поз. 5, фиг. 1 и фиг. 2) из течи, и чувствительного экрана-мишени (поз. 4, фиг. 1 и фиг. 2) расположенного на некотором расстоянии, на котором регистрируют место удара частиц, отражающихся в ловушку (поз. 6, фиг. 2). Чувствительность измерений в предложенном способе регулируют подбором пористости и истинной плотности индикаторных пористых частиц, что позволяет изменять в широких пределах удельную площадь поверхности взаимодействия индикаторной пористой частицы со свободномолекулярным потоком газа, истекающим из локальной негерметичности, а также изменением их начальных скоростей и расстояния между источником, запускающим индикаторные пористые частицы, и экраном-мишенью.
Увеличение пористости индикаторных пористых частиц при сохранении габаритных размеров увеличивает их удельную площадь поверхности взаимодействия со свободномолекулярным потоком газа, истекающим из локальной негерметичности, что позволяет достичь снижения величины порога чувствительности измерений при сохранении габаритных размеров индикаторных пористых частиц.
Увеличение пористости индикаторных пористых частиц при одновременном увеличении габаритных размеров позволяет сохранить их удельную площадь поверхности взаимодействия со свободномолекулярным потоком газа, истекающим из локальной негерметичности, и соответственно сохранить порог чувствительности измерений. Таким образом, увеличение габаритных размеров индикаторных пористых частиц позволяет упростить конструкцию измерительного устройства в виде чувствительного экрана-мишени (поз. 4, фиг. 1 и фиг. 2) при сохранении того же уровня порога чувствительности измерений.
Предложенный способ позволяет после первичного обнаружения факта локальной негерметичности с помощью двух уточняющих замеров определить место и расход газа из течи.
Данный способ позволяет упростить диагностику негерметичности корпуса КА, повысить ее точность и сократить время поиска места течи. Наиболее эффективно применять предложенный способ можно на крупных объектах (корпусах орбитальных станций), требующих обследования плоских и цилиндрических поверхностей большой площади в условиях глубокого или среднего вакуума.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2020 |
|
RU2761471C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА | 2021 |
|
RU2763208C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2012 |
|
RU2502972C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА | 2013 |
|
RU2542610C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ С ИСПОЛЬЗОВАНИЕМ ВОЛОКНИСТОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА С ЭЛЕКТРОМАГНИТНЫМИ СВОЙСТВАМИ | 2012 |
|
RU2502973C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА НА ОРБИТЕ С ИСПОЛЬЗОВАНИЕМ ВОЛОКНИСТОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА | 2007 |
|
RU2343439C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА НА ОРБИТЕ | 2006 |
|
RU2321835C1 |
ДАТЧИК ДЛЯ ИССЛЕДОВАНИЯ ПОТОКОВ МЕТЕОРОИДНЫХ И ТЕХНОГЕННЫХ ЧАСТИЦ В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ | 2016 |
|
RU2618962C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НА ОРБИТЕ МЕСТА ТЕЧИ В КОРПУСЕ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА | 2023 |
|
RU2813814C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТ ТЕЧИ ИЗ ОТСЕКА КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2160438C2 |
Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха внутри корпуса (3) космического аппарата. Судят о наличии локальной негерметичности с использованием чувствительной среды. Для этого из источника (2) с заданным шагом вдоль поверхности корпуса (3) космического аппарата запускают индикаторные дискретные пористые частицы (1), меняющие свои траектории под воздействием газового потока (5) из течи. Измеряют отклонение положения мест ударов индикаторных частиц (1) о чувствительный экран-мишень (4), устанавливаемый под заданным углом для отражения их в ловушку (6). При этом чувствительность измерений регулируют изменением начальных скоростей индикаторных частиц (1) и расстояния между источником (2), запускающим индикаторные частицы (1), и экраном-мишенью (4), а также подбором пористости и истинной плотности индикаторных частиц (1). Технический результат: снижение величины порога чувствительности, повышение точности определения параметров локальной негерметичности в условиях вакуума, сокращение времени поиска места течи, упрощение диагностики. 2 ил.
Способ контроля герметичности корпуса космического аппарата, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве которой применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью, отличающийся тем, что в качестве чувствительной среды применяют индикаторные пористые частицы и регулируют чувствительность измерений подбором пористости и истинной плотности индикаторных пористых частиц.
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2012 |
|
RU2502972C2 |
Д.В.Садин и др | |||
Математическая модель взаимодействия волокнистого чувствительного элемента со свободномолекулярным потоком газа / Труды Военно-космической академии им | |||
А.Ф.Можайского, 2012, N635, стр.28-31 | |||
В.Ю.Алексашов | |||
Математическая модель воздействия свободномолекулярного потока газа из локальной течи на волокнистый чувствительный элемент с учетом затенения отдельных структурных элементов в его объеме / Труды Военно-космической академии им | |||
А.Ф.Можайского, 2012, N635, стр.32-35. |
Авторы
Даты
2018-03-16—Публикация
2016-08-31—Подача