Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из отсеков КА в условиях орбитального полета или в процессе вакуумных испытаний.
Известен способ обнаружения на орбите негерметичности корпуса космического аппарата, заключающийся в том, что изолируют отдельные участки корпуса КА, формируя вспомогательные контрольные полости с образованием в каждой из них проходного сечения, перекрываемого ворсинками волокнистого чувствительного элемента, создают давление воздуха внутри корпуса и о наличии негерметичности судят по движению ворсинок, ведя киносъемку процесса (см. патент РФ №2152015, 27.06.2000 г., МПК G01M 3/04).
Недостатками данного способа являются: длительность поиска места негерметичности, так как требуется определенное время для процесса крепления к корпусу КА заглушек, при помощи которых образуют контрольные полости, и для заполнения контрольных полостей выходящим из корпуса КА воздухом, а также относительно невысокая точность обнаружения места течи.
Известен способ контроля герметичности корпуса КА, при котором создают давление воздуха внутри КА и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, осуществляя обдув частей корпуса КА пробным мелкодисперсным веществом, а обнаружение локальной негерметичности производят посредством визуализации изменения линий тока пробного мелкодисперсного вещества под воздействием выходящего из корпуса воздуха, проводя видеосъемку процесса (см. патент РФ №2321835, 01.11.2006 г., МПК G01M 3/00).
Основными недостатками указанного способа являются необходимость дополнительного оборудования для видеосъемки, а также возникновение облака дисперсных частиц вокруг КА в условиях орбитального полета.
Наиболее близким по технической сути к предлагаемому изобретению является способ контроля герметичности корпуса космического аппарата, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве которой применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью, (см. патент РФ №2502972, 27.03.2012 г., МПК G01M 3/00).
Основными недостатками указанного способа являются применение дополнительного устройства - экрана-мишени, а также необходимость точного определения массогабаритных параметров запускаемых индикаторных частиц и их начальной скорости.
Задачей предлагаемого изобретения является создание способа контроля герметичности корпуса космического аппарата, позволяющего сократить время поиска места течи, при котором техническим результатом будет являться отсутствие необходимости точного определения массогабаритных параметров запускаемых индикаторных частиц и их начальной скорости.
Этот технический результат в способе контроля герметичности корпуса космического аппарата, заключающемся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, достигается тем, что производят измерение скоростей этих частиц PIV-методом (Particle Image Velocimetry), местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы, величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы.
Сущность предлагаемого способа поясняется на фиг. 1.
В безразмерном виде представлены фазовые портреты продольной U (поз. 1, фиг. 1) и поперечной V (поз. 2, фиг. 1) составляющих вектора скорости V индикаторной частицы при прохождении над течью. Ось у направлена параллельно к исследуемой поверхности, х0 - начальная координата запуска индикаторной частицы, начало координат у/х0=0 помещено в центр течи, V0 - начальная скорость индикаторной частицы. При прохождении индикаторной частицы над течью продольная составляющая скорости U (поз. 1, фиг. 1) монотонно возрастает и стремится к асимптотическому значению, зависящему от величины течи. Поперечная по отношению к оси симметрии течи проекция скорости V (поз. 2, фиг. 1) вначале убывает, а затем возрастает до исходного значения, минимальное значение V наблюдается при у=0, что соответствует местоположению течи.
Чувствительность измерений в предложенном способе определяется подбором массо-габаритных и скоростных параметров индикаторных частиц, а также точностью измерения траекторий и скоростей этих частиц.
Предложенный способ позволяет после первичного обнаружения факта локальной негерметичности с помощью нескольких уточняющих замеров определить место и расход газа из течи.
Данный способ позволяет упростить диагностику негерметичности корпуса КА, повысить ее точность и сократить время поиска места течи.
Наиболее эффективно можно применять предложенный способ на объектах с преобладанием плоских и цилиндрических поверхностей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2020 |
|
RU2761471C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА | 2016 |
|
RU2647501C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2012 |
|
RU2502972C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА | 2013 |
|
RU2542610C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ С ИСПОЛЬЗОВАНИЕМ ВОЛОКНИСТОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА С ЭЛЕКТРОМАГНИТНЫМИ СВОЙСТВАМИ | 2012 |
|
RU2502973C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ НА ОРБИТЕ МЕСТА ТЕЧИ В КОРПУСЕ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА | 2023 |
|
RU2813814C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА НА ОРБИТЕ С ИСПОЛЬЗОВАНИЕМ ВОЛОКНИСТОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА | 2007 |
|
RU2343439C2 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА НА ОРБИТЕ | 2006 |
|
RU2321835C1 |
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗВЕШЕННЫХ ЧАСТИЦ | 2017 |
|
RU2655728C1 |
САМОХОДНЫЙ ПОИСКОВЫЙ ПОДВОДНЫЙ АППАРАТ | 2017 |
|
RU2688562C1 |
Изобретение относится к области испытаний ракетно-космической техники, а более конкретно к контролю герметичности корпуса космического аппарата. Способ контроля герметичности корпуса космического аппарата, при котором создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды. В качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи. Измерение скоростей этих частиц производят PIV-методом (Particle Image Velocimetry). Местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы. Величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы. Достигается сокращение времени поиска течи. 1 ил.
Способ контроля герметичности корпуса космического аппарата, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, отличающийся тем, что производят измерение скоростей этих частиц PIV-методом (Particle Image Velocimetry), местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы, величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы.
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА | 2016 |
|
RU2647501C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ВАКУУМЕ | 2012 |
|
RU2502972C2 |
JP 2009198399 A, 03.09.2009 | |||
US 7302845 B2, 04.12.2007. |
Авторы
Даты
2021-12-28—Публикация
2021-03-29—Подача