Способ измерения электрической емкости Российский патент 2018 года по МПК G01R27/26 G01R17/00 

Описание патента на изобретение RU2647564C1

Область техники, к которой относится изобретение

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.).

Уровень техники

Известно много способов измерения электрической емкости, среди которых можно отметить:

- способы, использующие резонансные свойства колебательного контура, содержащего катушку индуктивности и конденсатор с измеряемой емкостью СХ (Полулях К.С. Резонансные методы измерений. - М.: Энергия, 1980. - 120 с.);

- способы измерения параметров RC-генератора, содержащего во времязадающей цепи измеряемый конденсатор СХ (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - 624 с.);

- мостовые методы, основанные на сравнении измеряемой емкости с образцовой (Шарапов В.М. Емкостные датчики. В.М. Шарапов, И.Г. Минаев и др. Под ред. В.М. Шарапова. - Черкассы: Брама-Украина, 2010. - 152 с.).

Недостаток перечисленных способов заключается в необходимости использования и обработки высокочастотных сигналов, что усложняет их техническую реализацию.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятым авторами за прототип является известный способ измерения электрической емкости на постоянном токе, основанный на измерении параметров переходного процесса в пассивном линейном четырехполюснике, содержащем конденсатор с измеряемой емкостью СХ и активное сопротивление R в цепи его зарядки от источника постоянного тока с напряжением Е (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - С. 165-166).

Известно, что переходная характеристика такого четырехполюсника, т.е. его реакция на ступенчатый входной сигнал Е, графически представленная изменением напряжения U(t) на конденсаторе, имеет вид экспоненты

где: U(t) - мгновенное значение напряжения на конденсаторе с измеряемой емкостью СХ; t - время отсчета с момента поступления ступенчатого сигнала; Т - постоянная времени: Т=R⋅CX.

Известный способ измерения емкости основан на измерении мгновенного значения напряжения U(t) в соответствующий момент времени t, что позволяет, используя свойства экспоненты, определить постоянную времени Т и по ней значение измеряемой емкости

Измерение емкости указанным способом сопряжено с необходимостью стабилизации значений Е и R, т.к. их изменение под действием внешних факторов и старения приводит к появлению дополнительной погрешности измерения.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения Е источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью СХ на результат измерения, т.е. на повышение точности измерения электрической емкости.

Технический результат достигается тем, что на измеряемый конденсатор СХ через резистор R подают постоянное напряжение Е и измеряют время t1 заряда этого конденсатора с момента подачи Е до момента достижения на конденсаторе заранее принятого порогового значения U0; затем, не меняя значений сопротивления R и постоянного напряжения Е, заменяют измеряемый конденсатор на образцовый конденсатор с известной емкостью СО, заряжают его, фиксируют время t2 его зарядки до того же порогового значения U0 и рассчитывают измеряемую емкость СХ по формуле:

Краткое описание чертежей

На фиг. 1 изображена принципиальная схема реализации предлагаемого способа измерения емкости. На фиг. 2 - переходные характеристики, показывающие изменение мгновенных значений напряжений U1(t) и U2(t). На фиг. 3 - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа измерения электрической емкости.

Осуществление изобретения

Предлагаемый способ опирается на следующие предпосылки.

Как известно, при подключении RC-четырехполюсника к источнику постоянного тока напряжение на конденсаторе меняется по экспоненте. Так, если с помощью замыкающего ключа К1 (фиг. 1) в момент времени t=0 через резистор R подать постоянное напряжение Е на конденсатор с измеряемой емкостью СХ, то напряжение U1(t) на нем, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2):

с постоянной времени Т1=R⋅СХ.

Как только U1(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения Е. С помощью переключающего ключа К2 отключают измеряемый конденсатор СХ и замещают его образцовым конденсатором с известной емкостью СО. С помощью ключа К1 снова подают в момент времени t=0 через резистор R постоянное напряжение Е на конденсатор СО.

Напряжение U2(t) на конденсаторе СО начинает нарастать по экспоненте с постоянной времени Т2=RCO (фиг. 2):

Как только U2(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t2. В общем случае t1≠t2. Если, например, СОХ, то t2>t1 (как показано на фиг. 2). Так как моменты времени t1 и t2 фиксируют при достижении мгновенными значениями напряжений U1(t) и U2(t) одного и того же уровня U0, то можно записать:

С учетом (4) и (5) это условие (6) можно записать:

Из (7) следует, что , т.е. t1T2=t2T1 или

Решая (8) относительно неизвестного значения СХ, получаем формулу для его расчета (3).

При выводе этой расчетной формулы (3) в выражении (7) в левой и правой части равенства произвели сокращение на Е, а в выражении (8) - сокращение на R. Такие математические действия с равенствами (7) и (8) возможны в предположении, что за короткое время необходимое для проведения измерения t1 и t2 эти параметры, т.е. Е и R, остаются неизменными.

Поэтому значения Е и R не вошли в расчетную формулу (3), что устраняет возможность появления дополнительной погрешности в случае изменения этих параметров.

Так же в расчетную формулу (3) не вошло и значение U0, определяющее моменты t1 и t2.

Следовательно, предлагаемый способ устраняет влияние изменения напряжения источника питания Е, сопротивления R в цепи заряда измеряемой емкости и порогового значения напряжения U0, определяющего моменты фиксации t1 и t2.

Кроме того, если при измерении t1 и t2 имела место мультипликативная составляющая систематической инструментальной погрешности, то она также не повлияет на результат измерения емкости по предлагаемому способу, т.к. войдет сомножителем в числитель и знаменатель расчетной формулы (3).

Кроме того, если значения СХ и СО соизмеримы и, соответственно, соизмеримы значения t1 и t2, то практически исчезнет влияние и аддитивной составляющей систематической погрешности, т.к. она войдет в числитель и знаменатель расчетной формулы (3) с одним и тем же знаком.

Если предлагаемый способ будет реализован на базе микроконтроллера, то интервал времени, необходимый для его осуществления, т.е. для измерения t1 и t2 и расчета СХ по (3), будет составлять доли секунды, что позволяет рассчитывать на постоянство Е, R и U0 в столь короткий интервал.

Необходимо отметить, что последовательность измерения t1 и t2 не влияет на результат расчета по формуле (3). Можно сначала с помощью ключа К2 соединить с резистором R конденсатор Со, подать ключом К1 постоянное напряжение Е через резистор R на этот конденсатор и при достижении U2(t) порогового значения U0 зафиксировать t2; отключит Е; ключом К2 отсоединить СО и подключить СХ; подать Е на СХ; при достижении U1(t) порогового значения U0 зафиксировать t1 и по формуле (3) определить значение измеряемой емкости СХ.

Заранее принятое пороговое значение U0, как и в известном способе, основанном на измерении параметров переходного процесса, должно быть меньше значения Е, и его обычно выбирают в пределах (0,3-0,7)Е.

Значение СО с целью повышения чувствительности предлагаемого способа, исходя из общеизвестных положений метрологии, следует брать соизмеримым с предполагаемым значением измеряемой емкости СХ, что обеспечивает измерения как t1, так и t2 в равноточных условиях. Исходя из этого, можно рекомендовать СО=(0,1…10)СХ.

Измерение интервалов времени t1 и t2 возможно с применением любых известных средств как в цифровом, так и аналоговом исполнении, имеющих порог чувствительности, позволяющий проводить измерение емкости в соответствующих пределах. Чем выше чувствительность, тем меньше значение СХ, доступное для измерения предлагаемым способом.

Проверка работоспособности предлагаемого способа проводилась на установке (фиг. 3), в которой измеритель напряжения 1 выполнен на базе аналогового компаратора на операционном усилителе, например типа К554СА3. В качестве измерителя времени установлен электронный цифровой секундомер 2, например типа СИ8 ОВЕН, с чувствительностью 10 мс и имеющий два входа: один вход 3 для запуска высоким напряжением; другой вход 4 для остановки счета в случае поступления низкого напряжения (менее 0,8 В для этого секундомера). Такой порог чувствительности позволяет проводить измерения электрической емкости примерно от 0,5 мкФ и выше в сторону увеличения.

При измерении t1 и t2 при срабатывании ключа К1 (фиг. 3) высокое напряжение от источника Е поступает на вход 3 секундомера 2, запуская его в работу. Компаратор 1 включен по схеме инвертора, т.к. опорное напряжение U0 подается на неинвертирующий вход компаратора, а измеряемое напряжение U1(t) (или U2(t)) поступает на инвертирующий вход компаратора. До тех пор пока U1(t)<U0 (или U2(t)<0), на выходе компаратора высокое напряжение, что обеспечивает работу секундомера. Как только U1(t) (или U2(t)) станет равным U0, на выходе компаратора напряжение станет низким, что остановит работу секундомера и позволит снять его показания.

Как видно из представленной таблицы, изменение U0 с 5 до 7,5 В (опыты №1 и №2), изменение Е с 10 до 20 В (опыты №2 и №3), изменение R с 102 до 152 кОм практически не повлияли на точность измерения, и относительная погрешность измерения электрической емкости с применением предложенного способа не превысила 2%.

Предлагаемый способ измерения емкости по сравнению с прототипом и другими известными способами обладает следующими преимуществами:

- устраняет влияние дестабилизирующих факторов, таких как изменение напряжения питания, изменение сопротивления в цепи зарядки конденсатора и изменение значения напряжения срабатывания измерителя временных интервалов на точность измерения;

- доступность технической реализации на базе общедоступных микроконтроллеров, автоматически выполняющих все необходимые операции по измерению емкости.

Похожие патенты RU2647564C1

название год авторы номер документа
Способ измерения электрической емкости 2017
  • Минаев Игорь Георгиевич
  • Самойленко Владимир Валерьевич
  • Ушкур Дмитрий Геннадьевич
RU2660283C1
Способ измерения электрической емкости 2017
  • Минаев Игорь Георгиевич
  • Самойленко Владимир Валерьевич
  • Ушкур Дмитрий Геннадьевич
RU2645130C1
СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ 2022
  • Кожевников Андрей Юрьевич
  • Третьяков Василий Васильевич
RU2800808C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ КАТАЛИТИЧЕСКИ ОКИСЛЯЕМОГО ГАЗА В ВОЗДУХЕ 2004
RU2279668C1
Способ измерения электрических величин активного сопротивления, индуктивности и емкости 1990
  • Мелентьев Владимир Сергеевич
  • Баскаков Владимир Семенович
  • Шутов Владимир Степанович
  • Соколов Александр Алексеевич
  • Сафонов Александр Алексеевич
SU1797079A1
СПОСОБ ИЗМЕРЕНИЯ ЭКВИВАЛЕНТНОГО СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЭЛЕКТРИЧЕСКОЙ СЕТИ 1991
  • Пикулин Г.Е.
  • Осетров В.С.
  • Меланьин Е.И.
RU2011999C1
Способ определения параметров многоэлементных двухполюсников 2019
  • Воротников Игорь Николаевич
  • Мастепаненко Максим Алексеевич
  • Габриелян Шалико Жораевич
  • Мишуков Станислав Вадимович
RU2714954C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЕМКОСТНОГО И РЕЗИСТОРНОГО СЕНСОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Рабочий Александр Александрович
RU2289824C1
Способ преобразования температуры в частоту 1987
  • Демидов Леонид Александрович
SU1566229A1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИООБЪЕКТА 2012
  • Наумова Анна Викторовна
  • Глинкин Евгений Иванович
RU2509531C1

Иллюстрации к изобретению RU 2 647 564 C1

Реферат патента 2018 года Способ измерения электрической емкости

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости основан на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СХ заранее принятого порогового значения напряжения U0. Заменив измеряемый конденсатор СХ образцовым конденсатором СО с известной емкостью, измеряют время заряда образцового конденсатора t2, не меняя при этом значения сопротивления резистора R, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на конденсаторе. Измеряемую емкость вычисляют по формуле:

где СО - емкость образцового конденсатора; t1 - время заряда конденсатора с измеряемой емкостью СХ до заранее принятого порогового значения напряжения на его обкладках; t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках. Технический результат заключается в повышении точности измерения электрической емкости. 1 табл., 3 ил.

Формула изобретения RU 2 647 564 C1

Способ измерения электрической емкости, основанный на регистрации времени заряда измеряемого конденсатора с момента подачи на него через резистор постоянного напряжения до момента достижения на измеряемом конденсаторе заранее принятого порогового значения напряжения, отличающийся тем, что, заменив измеряемый конденсатор образцовым конденсатором с известной емкостью, измеряют время заряда образцового конденсатора, не меняя при этом значения сопротивления резистора, напряжения зарядного источника и заранее принятого порогового значения напряжения на конденсаторе, и измеряемую емкость вычисляют по формуле:

где СО - емкость образцового конденсатора;

t1 - время заряда конденсатора с измеряемой емкостью СX до заранее принятого порогового значения напряжения на его обкладках;

t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647564C1

ЦИФРОВОЙ ИЗМЕРИТЕЛЬ ЕМКОСТИ 0
SU256068A1
МИКРОКОНТРОЛЛЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ РЕЗИСТИВНЫХ И ЕМКОСТНЫХ ДАТЧИКОВ С ПЕРЕДАЧЕЙ РЕЗУЛЬТАТА ПРЕОБРАЗОВАНИЯ ПО РАДИОКАНАЛУ 2015
  • Хабаров Алексей Николаевич
  • Вострухин Александр Витальевич
  • Ламанов Сергей Геннадьевич
RU2603937C1
0
SU402984A1
Емкостное измерительное устройство 1977
  • Минаев Игорь Георгиевич
  • Фомин Владимир Михайлович
SU635438A1
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ 2015
  • Большаков Кирилл Николаевич
  • Моршнев Виктор Владимирович
RU2593818C1
US 3886447 A1, 27.05.1975
US 9224536 B2, 29.12.2015.

RU 2 647 564 C1

Авторы

Минаев Игорь Георгиевич

Самойленко Владимир Валерьевич

Ушкур Дмитрий Геннадьевич

Даты

2018-03-16Публикация

2017-01-09Подача