Изобретение относится к области термоядерной техники, в частности к процессу трансмутации минорных актинидов.
Наиболее близким к заявленному изобретению является модуль бланкета термоядерного реактора, в котором размещены тепловыделяющие сборки (ТВС) с тепловыделяющими элементами («Вопросы атомной науки и техники.», сер. Термоядерный синтез, 2004, вып. 4, с. 3-17, «Возможности керамического бланкета термоядерного реактора ДЕМО-С для трансмутации нептуния в нитридном топливе», А.А.Борисов). В указанном модуле бланкета ТВС выполнены шестигранного сечения, и пространство между ними не используется для трансмутации. В известном модуле бланкета в качестве теплоносителя рассматривают применение воды, гелия или свинца.
Известный модуль бланкета обладает следующими недостатками. Использование в качестве топлива только одного элемента минорных актинидов (нитрида нептуния) помимо усложнения технологии получения топлива приводит к малой эффективности трансмутации. Малая плотность заполнения ядерной зоны модуля бланкета приводит к низкой эффективности трансмутации нептуния во всех трех предлагаемых к применению теплоносителях (воде, гелии, свинце), а использование бериллиевой засыпки в пространстве между ТВС вызывает замедление нейтронов, что приводит к дополнительному снижению эффективности трансмутации.
Также следует отметить, что в случае использования в известном модуле бланкета свинцового теплоносителя требуется предварительный прогрев трактов течения теплоносителя бланкета и поддержание их минимальной температуры на уровне температуры плавления свинца, что приводит к усложнению конструкции. В случае использования газового охлаждения требуется учитывать допустимые ограничения тепловыделения в твэл, определяемые допустимой скоростью прокачки газа-носителя в межтвэльном пространстве, а в случае использования водяного теплоносителя из-за большого давления в элементах с ТВС требуется применение толстостенных оболочек, что увеличивает паразитное поглощение нейтронов. Еще одним недостатком использования воды в качестве теплоносителя является то обстоятельство, что нейтроны дополнительно замедляются и самой водой.
Технической проблемой, на решение которой направлено настоящее изобретение, является невысокая производительность ядерной зоны модуля бланкета термоядерного реактора.
Техническим результатом изобретения является увеличение размножающих свойств ядерной зоны модуля бланкета термоядерного реактора.
Указанный технический результат достигается тем, что в модуле бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем, содержащем тепловыделяющие сборки с тепловыделяющими элементами, топливо тепловыделяющих элементов изготовлено из оксида минорных актинидов, а тепловыделяющие сборки выполнены прямоугольного сечения.
Кроме того, в качестве теплоносителя может быть использована натрий-калиевая эвтектика.
За счет использования в модуле бланкета ТВС прямоугольного сечения повышается плотность заполнения ядерной зоны модуля, т.к. минимизируется неиспользуемое пространство в ядерной зоне, и, следовательно, повышаются размножающие свойства ядерной зоны. Вследствие использования оксида минорных актинидов в качестве топлива вместо одного нептуния повышается производительность трансмутации ядер, т.к. в качестве топлива используют более широкий спектр минорных актинидов ОЯТ, и при этом потери размножающих свойств ядерной зоны не происходит. В результате при тех же нейтронных нагрузках на первую стенку производится утилизация не только нептуния, но и других минорных актинидов. Таким образом, обеспечивается увеличение размножающих свойств ядерной зоны модуля бланкета термоядерного реактора, а следовательно, повышается его производительность.
Применение натрий-калиевой эвтектики позволяет отказаться от предварительного прогрева трактов течения теплоносителя и создает более жесткий спектр нейтронов, что также позволяет увеличить размножающие свойства ядерной зоны.
Сущность изобретения поясняется фиг. 1 и 2, на которых схематически представлен модуль бланкета термоядерного реактора, и фиг. 3, на которой представлен пример выполнения ТВС с тепловыделяющими элементами.
Модуль бланкета гибридного термоядерного реактора содержит первую стенку корпуса 1, верхнюю крышку корпуса 2 с расположенными в ней сборным коллектором 3 теплоносителя и сборным коллектором 4 газа-носителя трития, нижнюю крышку корпуса 5 с расположенными в ней раздающим коллектором 6 теплоносителя и раздающим коллектором 7 газа-носителя трития, тыльную плиту 8, ТВС 9 с тепловыделяющими элементами, фиксирующиеся с помощью дистанцирующих решеток 10, и канистры 11 с керамическим бридером.
ТВС 9 с тепловыделяющими элементами с топливом из оксида минорных актинидов собирают в ядерную зону. Фиксацию ТВС 9 в ядерной зоне осуществляют с помощью дистанцирующих решеток 10, в которые также устанавливают канистры 11 с керамическим бридером. ТВС 9 соединены входными/выходными патрубками с раздающим 6 и сборным 3 коллекторами теплоносителя. Сборный 4 и раздающий 7 коллекторы газа-носителя трития соединены с патрубками канистр 11 с керамическим бридером. Ядерная и бридерная зоны расположены и зафиксированы внутри первой стенки корпуса 1.
На фиг. 3 изображен пример выполнения ТВС 9 с тепловыделяющими элементами из оксида минорных актинидов. ТВС 9 содержит чехол 12, крышки с входным 13 и выходным 14 патрубками теплоносителя и тепловыделяющие элементы 15 из оксида минорных актинидов.
Устройство работает следующим образом.
Во время работы термоядерного реактора в плазме образуются нейтроны. Попадая в ядерную зону модуля бланкета, нейтроны при взаимодействии с ядрами минорных актинидов вызывают их деление, что приводит к трансмутации минорных актинидов. Данные процессы сопровождаются выделением энергии. Предварительные нейтронно-физические расчеты показали, что коэффициент эффективности не превышает 0,95, а суммарная тепловая мощность каждой ТВС 9 с минорными актинидами варьируется от 291 кВт в ТВС ближайшего к плазме ряда до 92 кВт в ТВС последнего ряда ядерной зоны. Вторичные нейтроны из ядерной зоны, попадая в бридерную зону, содержащую канистры 11 с керамическим бридером, замедляются и поглощаются ядрами лития, что приводит к наработке трития. Это сопровождается незначительным выделением энергии, снижающимся в пределах от 4.5 до 0.5 Вт/см3 по мере удаления от первой стенки 1, считая от примыкающих к ядерной зоне канистр 11. Для снятия выделяемой при вышеописанных процессах тепловой мощности в качестве теплоносителя используют натрий-калиевую эвтектику, которая через раздающий коллектор 6, расположенный в нижней крышке модуля, поступает в ТВС. Затем, пройдя через ТВС, теплоноситель попадет в сборный коллектор 3, расположенный в верхней крышке модуля, и далее теплоноситель подается в каналы охлаждения канистр с керамическим бридером. Кроме того, за счет повышения температуры теплоносителя при прохождении ядерной зоны, появляется возможность повышения температуры керамического бридера, для ускорения выделения трития из него.
название | год | авторы | номер документа |
---|---|---|---|
Керамический модуль бланкета для термоядерного реактора | 2023 |
|
RU2812963C1 |
ВАКУУМНАЯ КАМЕРА ТЕРМОЯДЕРНОГО РЕАКТОРА | 2020 |
|
RU2726940C1 |
ВАКУУМНАЯ КАМЕРА ТЕРМОЯДЕРНОГО РЕАКТОРА | 2018 |
|
RU2695632C1 |
БЛАНКЕТ ТЕРМОЯДЕРНОГО РЕАКТОРА | 2016 |
|
RU2633373C1 |
БЛАНКЕТ ТЕРМОЯДЕРНОГО РЕАКТОРА С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ | 2016 |
|
RU2633419C1 |
ЯДЕРНЫЙ РЕАКТОР ДЛЯ СЖИГАНИЯ ТРАНСУРАНОВЫХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ | 2013 |
|
RU2542740C1 |
СПОСОБ ЭКСПЛУАТАЦИИ ЯДЕРНОГО РЕАКТОРА В ТОПЛИВНОМ ЦИКЛЕ С РАСШИРЕННЫМ ВОСПРОИЗВОДСТВОМ ДЕЛЯЩИХСЯ ИЗОТОПОВ | 2015 |
|
RU2601558C1 |
ТРИТИЙВОСПРОИЗВОДЯЩИЙ МОДУЛЬ БЛАНКЕТА ТЕРМОЯДЕРНОГО РЕАКТОРА | 2002 |
|
RU2206928C1 |
БРИДИНГОВАЯ ЗОНА ТЕРМОЯДЕРНОГО РЕАКТОРА | 2005 |
|
RU2283517C1 |
ЯДЕРНЫЙ РЕАКТОР НА БЫСТРЫХ НЕЙТРОНАХ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ | 1996 |
|
RU2088981C1 |
Изобретение относится к области термоядерной техники, в частности к бланкетам гибридных термоядерных реакторов. Модуль бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем содержит тепловыделяющие сборки с тепловыделяющими элементами. Топливо тепловыделяющих элементов изготовлено из оксида минорных актинидов. Тепловыделяющие сборки выполнены прямоугольного сечения. Технический результат - увеличение размножающих свойств ядерной зоны модуля бланкета термоядерного реактора. 1 з.п. ф-лы, 3 ил.
1. Модуль бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем, содержащий тепловыделяющие сборки с тепловыделяющими элементами, отличающийся тем, что топливо тепловыделяющих элементов изготовлено из оксида минорных актинидов, а тепловыделяющие сборки выполнены прямоугольного сечения.
2. Модуль бланкета по п. 1, в котором в качестве теплоносителя используют натрий-калиевую эвтектику.
ТРИТИЙВОСПРОИЗВОДЯЩИЙ МОДУЛЬ БЛАНКЕТА ТЕРМОЯДЕРНОГО РЕАКТОРА | 2002 |
|
RU2212718C1 |
БЛАНКЕТ ТЕРМОЯДЕРНОГО РЕАКТОРА | 2002 |
|
RU2231140C1 |
CN 103578574 A, 12.02.2014 | |||
US 4663110 A1, 05.05.1987. |
Авторы
Даты
2018-04-05—Публикация
2017-09-15—Подача