СПОСОБ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ С УЛЬТРАМЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ Российский патент 2018 года по МПК C23C14/48 C23C14/02 

Описание патента на изобретение RU2649928C1

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов для повышения выносливости и циклической долговечности деталей.

В настоящее время большое внимание привлекают материалы с ультрамелкозернистой (УМЗ) структурой. Эти материалы обладают рядом уникальных свойств, имеющих практический интерес. Металлы с УМЗ структурой обладают повышенной прочностью, пластичностью, что делает их перспективными для промышленного использования. Однако детали, изготовленные из материалов с УМЗ структурой, в частности из титановых сплавов, для повышения их эксплуатационных характеристик также требуют поверхностной защитно-упрочняющей обработки.

Известен способ газового азотирования титановых сплавов, приводящий к получению на поверхности нитридов титана высокой твердости и износостойкости. Процесс проводят в основном при 700-900°C в аммиачной среде. Повышенные температуры процесса приводят к росту зерна в изделии, диффузии водорода и уменьшению характеристик пластичности и вязкости. Тонкие изделия, например лопасти центробежных насосов, получают значительные коробления (Химико-термическая обработка металлов и сплавов. Справочник под редакцией Ляховича Л.С. - М.: Металлургия, 1981, 424 с.).

Известен способ упрочнения деталей из титановых сплавов (патент US №5443663. МПК C23C 8/36. «Plasma nitrided titanium and titanium alloy products». Опубл. 1995), включающий ионное азотирование в плазме тлеющего разряда при температуре 480°C. Однако данный способ не может быть использован для упрочнения титановых сплавов с ульрамелкозернистой структурой, поскольку приводит к искажению структуры материала поверхностного слоя и ухудшению его эксплуатационных свойств.

Известен способ упрочнения поверхности титановых сплавов (патент RU №2117073. МПК C23C 14/48. Способ модификации поверхности титановых сплавов. Опубл. 1997), включающий имплантацию ионов азота и последующий стабилизирующий отжиг.

Известен также способ упрочнения поверхностей деталей из титановых сплавов включающий азотирование с последующим отжигом (патент RU №2558320. МПК C23C 8/36. Способ упрочнения поверхности титановых сплавов в вакууме. Бюл. №21. Опубл. 2015). Азотирование деталей проводят в вакуумной камере в газовой смеси азота и аргона при температуре 650-700°C путем вакуумного нагрева в плазме.

Недостатками известных способов является необходимость нагрева поверхностного слоя детали, при которой происходит нарушение структуры материала детали и потеря ее эксплуатационных свойств.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ упрочняющей обработки деталей из титановых сплавов, включающий предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота (патент РФ №2116378. МПК C23C 14/48. Способ модификации поверхностных слоев деталей из сплавов на основе титана. Опубл. 1998 г.). При этом предварительную обработку осуществляют методом ионной очистки ионами инертных газов аргона или ксенона с энергией 250-350 кВ, плотностью ионного тока 3-10 мА/см2, в течение времени более 3000 с, ионную имплантацию азотом проводят с энергией 30-50 мкА/см2, в течение 500-2500 с, а отжиг проводят при температуре 450-550°C и давлении остаточных газов 10-3-5⋅10-3 Па в течение 2-2,5 ч.

Недостатком прототипа является невозможность его применения для упрочняющей обработки деталей из титановых сплавов с УМЗ структурой из-за снижения эксплуатационных свойств материала.

Задачей настоящего изобретения является создание такого поверхностного слоя материала детали, который позволил бы обеспечить повышенные эксплуатационные характеристики деталей из титановых сплавов с УМЗ структурой.

Техническим результатом заявляемого способа является повышение эксплуатационных характеристик (предела выносливости, циклической долговечности) деталей из титановых сплавов с УМЗ структурой за счет упрочняющей ионно-имплантационной обработки поверхности деталей. Технический результат достигается тем, что в способе упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой, включающем предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота, в отличие от прототипа предварительную подготовку поверхности детали осуществляют электролитно-плазменным полированием в 5-7% водном растворе фторида аммония при температуре 65-75°C при напряжении 260-280 В, а ионно-имплантационную обработку проводят при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1.

Кроме того, в предлагаемом способе электролит дополнительно может содержать регуляторы кислотности для достижения pH раствора в диапазоне 4,5…6,5 pH, а в качестве регуляторов кислотности могут использоваться либо гидроксиламин солянокислый, либо гидроксиламин сернокислый, а в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу, были проведены следующие испытания. Образцы из титанового сплава ВТ-6 с УМЗ структурой были подвергнуты ионно-имплантационной обработке как по способу-прототипу (патент РФ №2116378. МПК C23C 14/48. 1998 г.) согласно приведенным в способе-прототипе условиям и режимам обработки, так и по предлагаемому способу.

Режимы обработки образцов по предлагаемому способу.

Электролитно-плазменное полирование (ЭПП). Напряжение: 250 В - неудовлетворительный результат (Н.Р.); 260 В - удовлетворительный результат (У.Р.); 280 В - (У.Р.); 290 В - (Н.Р.). Электролит - водный раствор фторида аммония, концентрацией: 4% - (Н.Р.); 5% - (У.Р.); 6% - (У.Р.); 7% - (У.Р.); 8% - (Н.Р.). Электролит с дополнительным содержанием регуляторов кислотности для достижения pH раствора в диапазоне 4,5…6,5 pH: гидроксиламин солянокислый - (У.Р.); гидроксиламин сернокислый - (У.Р.);

Температура процесса ЭПП: 58°C - (Н.Р.); 65°C - (У.Р.); 70°C - (У.Р.); 75°C - (У.Р.); 82°C - (Н.Р.).

Ионно-имплантационная обработка (ИИО) ионами азота. Величина энергии: 13 кэВ - (Н.Р.); 15 кэВ - (У.Р.); 16 кэВ - (У.Р.); 17 кэВ - (У.Р.); 18 кэВ - (У.Р.); 20 кэВ - (Н.Р.). Доза: 1,4⋅1017 см-2 - (Н.Р.); 1,6⋅1017 см-2 - (У.Р.); 1,8⋅1017 см-2 - (У.Р.); 2,0⋅1017 см-2 - (У.Р.); 2,2⋅1017 см-2 - (Н.Р.). Скорость набора дозы: 0,5⋅1015 с-1 - (Н.Р.); 0,7⋅1015 с-1 - (У.Р.); 0,9⋅1015 с-1 - (У.Р.); 1,0⋅1015 с-1 - (У.Р.); 1,16⋅1015 с-1 - (Н.Р.).

В качестве деталей из титанового сплава ВТ-6 с УМЗ структурой использовались экспериментальные образцы лопаток компрессора газотурбинного двигателя, лопатки газотурбинной установки и лопатки паровой турбины.

Неудовлетворительным результатом считался режим обработки, приводящий к снижению выносливости и циклической прочности образцов титанового сплава с УМЗ структурой в результате ионно-имплантационного воздействия на поверхность образца. удовлетворительным результатом принимался результат, обеспечивающий повышение выносливости и циклической прочности образцов из титанового сплава с УМЗ структурой не менее чем на 3-8%.

Обработка по способу-прототипу (патент РФ №2116378) - (Н.Р.).

Были проведены испытания на выносливость и циклическую прочность образцов из титанового сплава ВТ-6 с УМЗ структурой на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии составляет 520-550 МПа, у образцов, упрочненных по способу-прототипу - 500-530 МПа, а по предлагаемому способу - 560-590 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой следующих приемов: предварительная подготовка поверхности детали и последующая ее ионно-имплантационная обработка ионами азота; использование в качестве предварительной обработки поверхности детали электролитно-плазменное полирования; использование в качестве упрочняющей обработки поверхности детали ионно-имплантационной обработки ионами азота; проведение электролитно-плазменного полирования при напряжении 260-280 В в 5-7% водном растворе фторида аммония при температуре 65-75°C, а также использование следующих дополнительных приемов: проведение ионно-имплантационной обработки деталей при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1; использование в качестве деталей из титановых сплавов либо лопаток компрессора газотурбинного двигателя или газотурбинной установки, либо лопаток паровой турбины позволяет повысить эксплуатационные характеристики (предел выносливости, циклическую долговечность) деталей из титановых сплавов с ультрамелкозернистой структурой, что подтверждает заявленный технический результат предлагаемого изобретения.

Похожие патенты RU2649928C1

название год авторы номер документа
Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии 2021
  • Смыслов Анатолий Михайлович
  • Гонтюрев Василий Андреевич
  • Дыбленко Юрий Михайлович
  • Селиванов Константин Сергеевич
  • Мингажев Аскар Джамилевич
RU2768945C1
СПОСОБ ОБРАБОТКИ ЛОПАТКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2013
  • Смыслов Анатолий Михайлович
  • Ганцев Рустем Халимович
  • Галиев Владимир Энгелевич
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамилевич
  • Фаткуллина Диляра Зенуровна
RU2533223C1
СПОСОБ ЗАЩИТЫ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ 2014
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Григорьев Алексей Владимирович
  • Гордеев Вячеслав Юрьевич
  • Таминдаров Дамир Рамильевич
  • Юрченко Дмитрий Николаевич
  • Смыслова Марина Константиновна
  • Скворцов Евгений Витальевич
  • Живушкин Алексей Алексеевич
RU2559612C1
СПОСОБ ЗАЩИТЫ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ 2015
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамильевич
  • Бекличеев Павел Васильевич
  • Смыслова Марина Константиновна
  • Гордеев Вячеслав Юрьевич
  • Григорьев Алексей Владимирович
  • Юрченко Дмитрий Николаевич
  • Скворцов Евгений Витальевич
  • Живушкин Алексей Алексеевич
RU2585599C1
СПОСОБ ЗАЩИТЫ ПЕРА ЛОПАТКИ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ГАЗОАБРАЗИВНОГО ИЗНОСА 2023
  • Смыслов Анатолий Михайлович
  • Гонтюрев Василий Андреевич
  • Селиванов Константин Сергеевич
  • Таминдаров Дамир Рамилевич
RU2806569C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2496910C2
СПОСОБ ЗАЩИТЫ БЛИСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ПЫЛЕАБРАЗИВНОЙ ЭРОЗИИ 2018
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Гонтюрев Василий Андреевич
  • Таминдаров Дамир Рамилевич
  • Мингажев Аскар Джамилевич
  • Гумеров Александр Витальевич
RU2693414C1
СПОСОБ УПРОЧНЕНИЯ ЛОПАТОК МОНОКОЛЕСА ИЗ ТИТАНОВОГО СПЛАВА 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2682265C1
СПОСОБ ЗАЩИТЫ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2015
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамильевич
  • Бекличеев Павел Васильевич
  • Смыслова Марина Константиновна
  • Гордеев Вячеслав Юрьевич
  • Григорьев Алексей Владимирович
  • Юрченко Дмитрий Николаевич
  • Скворцов Евгений Витальевич
  • Живушкин Алексей Алексеевич
RU2585580C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2479667C2

Реферат патента 2018 года СПОСОБ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ С УЛЬТРАМЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов. Осуществляют предварительную обработку поверхности детали электролитно-плазменным полированием. Электролитно-плазменное полирование проводят при напряжении 260-280 В в 5-7% водном растворе фторида аммония при температуре 65-75°C. Затем осуществляют ионно-имплантационную обработку ионами азота при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1. В результате достигают повышение выносливости и циклической долговечности деталей. 2 з.п. ф-лы.

Формула изобретения RU 2 649 928 C1

1. Способ упрочняющей обработки детали из титанового сплава с ультрамелкозернистой структурой, включающий предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота, отличающийся тем, что предварительную подготовку поверхности детали осуществляют электролитно-плазменным полированием в 5-7% водном растворе фторида аммония при температуре 65-75°С при напряжении 260-280 В, при этом ионно-имплантационную обработку выполняют при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2 и со скоростью набора дозы от 0,7⋅1015 c-1 до 1⋅1015 с-1.

2. Способ по п. 1, отличающийся тем, что используют электролит, дополнительно содержащий регуляторы кислотности для достижения рН раствора в диапазоне 4,5…6,5 рН, а в качестве регуляторов кислотности используют гидроксиламин солянокислый или гидроксиламин сернокислый.

3. Способ по п. 1 или 2, отличающийся тем, что осуществляют обработку лопатки компрессора газотурбинного двигателя, или газотурбинной установки, или паровой турбины.

Документы, цитированные в отчете о поиске Патент 2018 года RU2649928C1

СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА 1996
  • Смыслов А.М.
  • Гусева М.И.
  • Маслова Л.И.
RU2116378C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2496910C2
СПОСОБ НАНЕСЕНИЯ ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ 2008
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Дыбленко Михаил Юрьевич
  • Мингажева Алиса Аскаровна
RU2375493C1
СПОСОБ НАНЕСЕНИЯ ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ 2008
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Дыбленко Михаил Юрьевич
RU2403316C2
СПОСОБ ЗАЩИТЫ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2015
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамильевич
  • Бекличеев Павел Васильевич
  • Смыслова Марина Константиновна
  • Гордеев Вячеслав Юрьевич
  • Григорьев Алексей Владимирович
  • Юрченко Дмитрий Николаевич
  • Скворцов Евгений Витальевич
  • Живушкин Алексей Алексеевич
RU2585580C1
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННО СТОЙКОГО ПОКРЫТИЯ, СОДЕРЖАЩЕГО НАНОСЛОИ, ДЛЯ ЛОПАТОК ТУРБОМАШИН ИЗ ТИТАНОВЫХ СПЛАВОВ 2007
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Дыбленко Михаил Юрьевич
  • Рамазанов Альберт Нуруллаевич
  • Мингажева Алиса Аскаровна
RU2390578C2
СПОСОБ ЗАЩИТЫ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ 2015
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамильевич
  • Бекличеев Павел Васильевич
  • Смыслова Марина Константиновна
  • Гордеев Вячеслав Юрьевич
  • Григорьев Алексей Владимирович
  • Юрченко Дмитрий Николаевич
  • Скворцов Евгений Витальевич
  • Живушкин Алексей Алексеевич
RU2585599C1
US 5032421 A1, 16.07.1991
US 5900126 A1, 04.05.1999.

RU 2 649 928 C1

Авторы

Семенова Ирина Петровна

Смыслова Марина Константиновна

Мингажев Аскар Джамилевич

Таминдаров Дамир Рамилевич

Даутов Станислав Сагитович

Юнусов Айнур Наилевич

Даты

2018-04-05Публикация

2017-05-31Подача