Изобретение относится к нефтегазовому делу, в частности к способам определения дебита скважин, оборудованных погружными установками электроцентробежных насосов со станцией управления.
Известен способ определения дебита скважин, оборудованных установками электроцентробежных насосов, в котором дебит скважины считается равным подаче насоса, при этом подача насоса определяется по дифференциальному перепаду давления на штуцере, установленном на выкидной линии, плотности откачиваемой жидкости и площади поперечного сечения штуцера [Ивановский В.Н. Основы создания и эксплуатации программно-аппаратных комплексов подбора и диагностики скважинных насосных установок для добычи нефти. РНТЖ «Нефтепромысловое дело», №5, 2000].
Недостатком указанного способа являются постоянно меняющиеся значения коэффициента расхода жидкости через штуцер и плотности жидкости (обусловленные изменением обводненности и содержания газа в нефти). Кроме того, замеры происходят на поверхности, что способствует накоплению ошибки из-за отличия скважинных условий от поверхностных.
Известен также способ определения дебита скважины, оборудованной установкой электроцентробежного насоса, включающий измерение потребляемой мощности электродвигателя привода насоса, давления на приеме насоса, потерь мощности в кабеле и построение энергетической характеристики для разной производительности насоса, по которой определяют дебит скважины [SU 1820668, опубл. 20.09.1995].
Недостатком такого способа является невысокая точность определения дебита скважины, обусловленная тем, что по мощности определяют количество жидкости на приеме насоса (забое скважины), которое отличается от количества жидкости на устье скважины - дебита скважины из-за сжимаемости жидкостной смеси, состоящей из нефти, воды и газа, и большой разницы давлений и температуры на приеме насоса и устье скважины, кроме того, при незначительном влиянии подачи насоса на его мощность одному и тому же значению мощности могут соответствовать разные значения подачи.
Наиболее близким техническим решением, принятым авторами за прототип, является способ определения дебита скважин, в котором дебит скважины считают равным подаче насоса и рассчитывают путем снятия характеристики подача - напор скважинного насоса, энергетической характеристики мощность и КПД - подача на жидкости - воде, определения плотности жидкостной смеси, определения фактического напора насоса, построения расчетной характеристики подача - напор на жидкостной смеси, построения расчетных энергетических характеристик и по расчетным характеристикам определения подачи насоса - дебита скважины, соответствующей фактическому напору и фактическому энергопотреблению [Патент RU 2581180 С1, опубл. 20.04.2016].
Недостатком указанного способа является низкая точность определения дебита, связанная с постоянным пересчетом параметров с характеристик насоса, полученных на воде, на реальную жидкость, что дает лишь приближенную модель реальных скважинных условий; использованием большого количества параметров для расчета, которые могут быть известны не на каждой скважине и также имеют свою погрешность измерения, которая суммарно отражается на точности результата работы алгоритма. Кроме того, пересчет характеристики насоса с паспортной на реальную происходит в несколько этапов, что чревато появлением и накапливанием бесконтрольной ошибки на каждом из них.
Технический результат предлагаемого изобретения заключается в повышении точности определения дебита скважин, оборудованных насосными установками с помощью методики, предполагающей минимальный набор входных данных, известных на подавляющем большинстве скважин.
Поставленный технический результат достигается тем, что в способе определения дебита скважин, оборудованных насосными установками, включающем построение напорно-расходной характеристики используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение дебита по расчетной напорно-расходной характеристике, согласно изобретению для повышения точности определения подачи насоса используют его фактические напорно-расходные характеристики, полученные путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения параметров с помощью технологий искусственного интеллекта, причем интерполяцию осуществляют в трехмерном пространстве безразмерных переменных Q/(n D3), v/(n D2), gH/(n2 D2), где Q - подача, n - частота вращения вала, v - вязкость, Н - напор, D - диаметр рабочего колеса, g - ускорение свободного падения.
Предлагаемый способ состоит из следующих этапов.
На подготовительном этапе выполняют измерения напорно-расходных характеристик насоса на ряде модельных жидкостей различной вязкости. Вязкости выбирают таким образом, чтобы перекрыть диапазон вязкостей скважинных жидкостей, например от 1 до 1000 сСт. Для выбранной рабочей жидкости вязкость регулируют температурой с постепенным изменением ее с заданным шагом. На каждом значении вязкости производится варьирование частот вращения ротора (например, в диапазоне частот вращения от 2000 до 6000 об/мин с шагом 1000 об/мин), создавая тем самым базу фактических характеристик конкретной ступени насоса в заданных диапазонах изменения значимых параметров. Для исчерпывающего описания дискретный набор характеристик следует объединить в единую функцию, т.е. построить аппроксимирующую гиперповерхность в пространстве пяти переменных (Н, Q, v, n, D). Такая задача является сложной, упрощение ее достигается переходом к безразмерным комбинациям, позволяющим уменьшить число аргументов искомой функции и тем самым облегчить и уточнить ее нахождение, вычисление, определение из опыта. Из имеющихся переменных составляют следующие безразмерные комбинации: Q/(n D3), v/(n D2), gH/(n2 D2), первая из них является аналогом безразмерной подачи, вторая - безразмерной вязкости, третья - безразмерного напора.
Далее, для получения промежуточных значений между совокупностью снятых на стенде экспериментальных точек используют технологию обучаемой нейросети. Для этого перестраивают измеренные напорно-расходные характеристики в 3-х мерном пространстве безразмерных напора, подачи, вязкости и используют их для обучения трехслойной нейросети, состоящей из входного, скрытого и выходного слоев. На входном слое нейросети задаются безразмерные нормированные напор и вязкость, на выходном - безразмерная подача. В результате обучения получают численные значения весовых коэффициентов, определяющих универсальную зависимость выходного параметра (безразмерной подачи) от входных параметров (безразмерных напора, вязкости). Дальнейшее варьирование входных параметров с любым сколь угодно мелким шагом и вычисление соответствующего выходного параметра позволяет получить непрерывную гладкую зависимость в пространстве безразмерных характеристик. Таким образом, разрозненные напорно-расходные характеристики конкретного насоса, измеренные для различных вязкостей перекачиваемой жидкости на разных частотах вращения вала становится возможным объединить в универсальную зависимость безразмерной подачи от безразмерного напора и безразмерной вязкости.
На втором этапе формируют базу данных насосов, задавая фактические напорно-расходные характеристики с помощью весовых коэффициентов по каждому из насосов. Далее база данных и программный код, вычисляющий подачу по известным напору, вязкости, частоте вращения вала, внедряются в программное обеспечение станции управления с функцией определения подачи. Для определения напора используют один из двух методов. При наличии датчиков давления на приеме и выкиде насоса осуществляют прямой замер напора. При отсутствии датчика давления на выкиде насоса замеряют буферное давление, используют существующие методики для расчета перепада давления в трубе НКТ по известным характеристикам скважинной жидкости (давление насыщения, объемный коэффициент нефти, обводненность жидкости, плотность нефти и др.) и вычисляют полный напор насоса как разницу между буферным давлением и потерями давления в трубе НКТ.
На последнем этапе при эксплуатации насосной установки, оборудованной станцией управления с функцией определения подачи, задают/считывают исходные данные (фактический напор, вязкость, частота вращения вала, габарит насоса), запускают в автоматическом режиме алгоритм определения подачи для заданного насоса и получают рассчитанное с минимальной погрешностью значение фактической подачи, выводимое на экран станции управления.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ | 2017 |
|
RU2652219C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ | 2013 |
|
RU2575785C2 |
СПОСОБ ПЕРИОДИЧЕСКОЙ ЭКСПЛУАТАЦИИ НЕФТЯНОЙ СКВАЖИНЫ ПОГРУЖНОЙ НАСОСНОЙ УСТАНОВКОЙ С РЕГУЛИРУЕМЫМ ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ | 2014 |
|
RU2553744C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ | 2015 |
|
RU2581180C1 |
СПОСОБ СБОРА И ПЕРЕДАЧИ ДАННЫХ, ПРИМЕНЯЕМЫХ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ МНОГОФАЗНОГО ПОТОКА ПРОДУКЦИИ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН | 2020 |
|
RU2756138C1 |
Способ регулирования режима работы скважины, оборудованной установкой электроцентробежного насоса, в системе межскважинной перекачки | 2021 |
|
RU2758326C1 |
Способ оптимизации работы скважины, оборудованной скважинным насосом | 2018 |
|
RU2700149C1 |
СКВАЖИННЫЙ ПОГРУЖНОЙ НАСОС ДЛЯ ПЕРЕКАЧКИ ВЯЗКОЙ ЖИДКОСТИ | 2012 |
|
RU2516753C1 |
СПОСОБ ДОБЫЧИ ВЫСОКОВЯЗКИХ ЭМУЛЬСИЙ ВОДА-НЕФТЬ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2017 |
|
RU2651857C1 |
ТУРБИННЫЙ РАСХОДОМЕР | 2014 |
|
RU2572220C1 |
Изобретение относится к нефтегазовому делу, в частности к способам определения дебита скважин, оборудованных погружными установками электроцентробежных насосов со станцией управления. Способ включает построение фактических напорно-расходных характеристик используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение подачи насоса, равной дебиту скважины по напорно-расходной характеристике. Фактические напорно-расходные характеристики получают путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения этих характеристик с помощью технологий искусственного интеллекта. Интерполяцию осуществляют в пространстве безразмерных переменных Q/(n D3), v/(n D2), gH/(n2 D2), где Q - подача, n - частота вращения вала, v - вязкость, H - напор, D - диаметр рабочего колеса, g - ускорение свободного падения. Технический результат заключается в повышении точности определения дебита скважин, оборудованных насосными установками.
Способ определения дебита скважин, оборудованных насосными установками, включающий построение напорно-расходной характеристики используемого насоса с учетом фактических плотности и вязкости откачиваемой газожидкостной смеси, фактической частоты вращения ротора насоса, вычисление фактического напора и определение дебита по расчетной напорно-расходной характеристике, отличающийся тем, что используют фактические напорно-расходные характеристики, полученные путем их измерения на ряде модельных жидкостей различной вязкости для дискретного набора частот вращения ротора и интерполяции на промежуточные значения этих характеристик с помощью технологий искусственного интеллекта, причем интерполяцию осуществляют в пространстве безразмерных переменных Q/(n D3), v/(n D2), gH/(n2 D2), где Q - подача, n - частота вращения вала, v - вязкость, Н - напор, D - диаметр рабочего колеса, g - ускорение свободного падения.
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ | 2015 |
|
RU2581180C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИНЫ, ОБОРУДОВАННОЙ ГЛУБИННЫМ НАСОСОМ | 1988 |
|
SU1820668A1 |
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА И ПЛОТНОСТИ ЖИДКОСТИ, ПОДАВАЕМОЙ ЦЕНТРОБЕЖНЫМ ЭЛЕКТРОНАСОСОМ | 1996 |
|
RU2119148C1 |
СПОСОБ ЭКСПЛУАТАЦИИ НАСОСНОГО АГРЕГАТА В ПРОЦЕССЕ ЗАКАЧКИ ЖИДКОСТИ В ПЛАСТ | 2009 |
|
RU2395723C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИН, ОБОРУДОВАННЫХ НАСОСНЫМИ УСТАНОВКАМИ | 2013 |
|
RU2575785C2 |
СИСТЕМА КОНТРОЛЯ РАБОТЫ ПОГРУЖНОГО НАСОСНОГО ОБОРУДОВАНИЯ | 2015 |
|
RU2602774C1 |
WO 2008131218 A3, 30.10.2008. |
Авторы
Даты
2018-04-25—Публикация
2017-06-27—Подача