Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважине, в частности к винтовым героторным гидравлическим двигателям для бурения нефтяных и газовых скважин.
Известен винтовой гидравлический механизм, используемый в качестве насоса или двигателя, содержащий корпус статора и ротор, при этом ротор имеет внешнюю винтовую поверхность, а корпус статора выполнен в виде монолитного жесткого трубчатого элемента, имеющего цилиндрическую внешнюю поверхность и внутреннюю поверхность, а также имеющую винтовые зубья, при этом упомянутый механизм содержит гибкий слой, выполненный из эластомера, имеющий однородную толщину на внутренней поверхности корпуса (US 2005/0079083 А1, 14.04.2005).
В известном гидравлическом механизме гибкий слой, выполненный из эластомера, имеющий однородную толщину на внутренней поверхности корпуса, подвергается деформации и изгибу при планетарно-роторном вращении ротора внутри статора, что приводит к образованию на выступах и впадинах зубьев зон, отличающихся друг от друга величинами контактного давления, сдвиговой прочности, твердости (упругости) и теплопроводности.
Температура в эластомерной обкладке может повышаться, например, до 60°C, а увеличение натяга в рабочей паре может составлять, например, до 0,05 мм на диаметр на каждые 10°С повышения температуры.
Недостатком известной конструкции является неполное использование возможности повышения надежности и ресурса винтового гидравлического механизма при его использовании в винтовом забойном двигателе, а также повышения максимальной мощности, момента силы на выходном валу в режиме максимальной мощности и усталостной выносливости (ресурса) обкладки из эластомера - не менее 100 тысяч циклов.
Недостатки известной конструкции объясняются неполной возможностью оптимизации толщины обкладки из эластомера вдоль выступов и впадин винтовых зубьев, что приводит к ухудшению отвода внутреннего тепла от обкладки из эластомера к потоку бурового раствора внутри корпуса, а также сквозь стенки корпуса к потоку бурового раствора затрубного пространства, образованию в центрах профиля эластомерной обкладки зон деструкции материала от воздействия градиента температур и увеличению натяга в рабочей паре.
В результате центр профиля становится менее гибким (хрупким и ломким), механические свойства эластомера, например резины, на этих участках значительно ухудшаются, при этом давление, действующее в камерах между ротором и статором, может превысить предел сдвиговой прочности эластомера, а вершины зубьев в обкладке деформируются и отрываются от корпуса.
Известен статор винтового героторного гидравлического насоса или двигателя, содержащий корпус с внутренней поверхностью, выполненной с внутренними винтовыми зубьями, закрепленные в корпусе охватываемую и охватывающую обкладки из эластомера, при этом охватываемая обкладка выполнена с внутренними винтовыми зубьями, предназначенными для размещения ротора, имеющего наружную поверхность с винтовыми зубьями, охватывающая обкладка скреплена с охватываемой обкладкой и с внутренней поверхностью корпуса, а число зубьев ротора на единицу меньше числа зубьев корпуса (US 6881045 A, 23.12.2004).
Известный гидравлический механизм содержит гибкий слой, выполненный из эластомера, имеющий однородную, по существу, одинаковую толщину на внутренней поверхности корпуса, что приводит к образованию на выступах и впадинах зубьев зон, отличающихся друг от друга величинами контактного давления, сдвиговой прочности, твердости (упругости) и теплопроводности, которые подвергаются деформации и изгибу при планетарно-роторном вращении ротора внутри статора.
Недостатки известной конструкции объясняются неполной возможностью оптимизации толщины обкладки из эластомера вдоль выступов и впадин винтовых зубьев, что приводит к ухудшению отвода внутреннего тепла от обкладки из эластомера к потоку бурового раствора внутри корпуса, а также сквозь стенки корпуса к потоку бурового раствора затрубного пространства, образованию в центрах профиля эластомерной обкладки зон деструкции материала от воздействия градиента температур и увеличению натяга в рабочей паре.
В результате центр профиля становится менее гибким (хрупким и ломким), механические свойства резины или эластомера на этих участках значительно ухудшаются, при этом давление, действующее в камерах между ротором и статором, может превысить предел сдвиговой прочности эластомера, а вершины зубьев в обкладке деформируются и отрываются от корпуса.
Недостатком известной конструкции является также низкая прочность корпуса статора, а также потеря его устойчивости преимущественно при осевой нагрузке на долото и ударных воздействиях от ясов в составе изогнутой колонны бурильных труб в наклонно направленных скважинах, например, при прохождении через радиусные участки ствола скважины при горизонтальном бурении, что объясняется тем, что он выполнен составным: из корпуса - гладкой трубы, охватываемой и охватывающей обкладок из эластомера, выполненных в форме геликоида.
Эластомерную охватываемую обкладку одинаковой толщины выполняют из материала, например, Ultra-Flex 114, а дополнительную охватывающую обкладку с внутренней поверхностью в форме геликоида, по существу, с внутренними винтовыми многозаходными зубьями выполняют из более твердого и прочного материала.
При этом известный статор при использовании его в винтовом героторном гидравлическом двигателе не обеспечивает существенных преимуществ, например, максимального темпа набора кривизны (при бурении наклонно направленной скважины) вследствие разрушения корпуса, например, при прохождении через радиусные участки ствола скважины при горизонтальном бурении с использованием в колонне бурильных труб гидромеханического яса, с вращением (от ротора буровой) изогнутой колонны бурильных труб (20÷40 об/мин), с ударными нагрузками и ударными импульсами от гидравлического яса, а также вследствие релаксации растягивающих напряжений в изогнутой колонне бурильных труб, в которой установлен статор для двигателя.
Недостатки известного статора объясняются также циклическим нагружением винтовых зубьев, выполненных, например, из эластомеров разной сдвиговой прочности, твердости и теплопроводности, которые подвергаются деформации и изгибу при планетарно-роторном вращении ротора внутри статора, что приводит к выделению тепла внутри материала зубьев, нарушению натяга в рабочей паре, отслоению эластомерной обкладки от корпуса, а также к расслоению между эластомерными обкладками вследствие ухудшения отвода внутреннего тепла из эластомерной обкладки сквозь слой материала через стенки корпуса к буровому раствору затрубного пространства.
При этом температура в эластомерной обкладке может повышаться, например, до 85°C, а увеличение натяга в рабочей паре может составлять, например, до 0,08 мм на диаметр на каждые 10°C повышения температуры, что приводит к нерасчетным режимам работы, не обеспечивает максимальной мощности, момента силы на выходном валу в режиме максимальной мощности и допустимой осевой нагрузки при повышении максимального перепада давления (межвиткового, на зубьях статора) в режиме максимальной мощности.
Известен статор для гидравлического забойного двигателя, образующий наружную трубу с внутренней поверхностью, выполненной, по меньшей мере, с двумя внутренними винтовыми зубьями (или лопастями), закрепленную в корпусе обкладку, например, из эластомера, прилегающую к внутренней поверхности наружной трубы, при этом обкладка выполнена с внутренними винтовыми зубьями (или лопастями), совпадает по форме с внутренними винтовыми зубьями (или лопастями) в наружной трубе, а толщина обкладки является максимальной на зубьях (или лопастях), радиально направленных внутрь (не менее двух) (US 6604921 В1, 14.04.2005).
Недостатком известной конструкции является неполное использование возможности повышения надежности и ресурса винтового забойного двигателя, максимальной мощности, момента силы на выходном валу в режиме максимальной мощности и усталостной выносливости (ресурса) эластомерной обкладки - не менее 100 тысяч циклов.
Так как эластомер характеризуется высокими изоляционными свойствами, он задерживает передачу тепла в большей степени вдоль выступов винтовых зубьев по сравнению с впадинами этих винтовых зубьев.
Температура в обкладке из эластомера может повышаться, например, до 85°C, а увеличение натяга в рабочей паре может составлять, например, до 0,08 мм на диаметр на каждые 10°C повышения температуры, что приводит к нерасчетным режимам работы, не обеспечивает максимальной мощности, момента силы на выходном валу в режиме максимальной мощности и допустимой осевой нагрузки при повышении максимального перепада давления (межвиткового, на зубьях статора) в режиме максимальной мощности.
Недостатки известного статора для винтовой героторной гидромашины объясняются неполным использованием возможности оптимизации толщины обкладки вдоль впадин внутренней винтовой поверхности и минимальной толщины стенки наружной трубы по отношению к высоте зубьев в обкладке, а также образованием на выступах и впадинах зубьев зон, отличающихся друг от друга величинами контактного давления, сдвиговой прочности, твердости (упругости) и теплопроводности, которые подвергаются деформации и изгибу при планетарно-роторном вращении ротора внутри статора, что приводит к повышенному градиенту температур при выделении тепла внутри материала зубьев и нарушению натяга в рабочей паре, к ухудшению отвода внутреннего тепла из эластомерной обкладки к потоку бурового раствора внутри корпуса, а также сквозь стенки наружной трубы к буровому раствору затрубного пространства, поток которого направлен от забоя к устью скважины.
Из-за тепла, образуемого в центрах зубьев, происходит вторичная полимеризация: молекулярная сшивка эластомера (резины), что приводит к деструкции материала, вследствие этого центр профиля обкладки становится негибким (хрупким и ломким), механические свойства эластомера на этих участках значительно ухудшаются, при этом давление, действующее в камерах между ротором и статором, может превысить предел сдвиговой прочности эластомера, а вершины статора деформируются и отрываются от статора.
Наиболее близким к заявляемой конструкции является статор винтовой героторной гидромашины, например двигателя для вращения ротора от насосной подачи текучей среды или насоса для подачи текучей среды за счет вращения ротора, содержащий наружную трубу с внутренней поверхностью, выполненной в форме геликоида с внутренними винтовыми зубьями, закрепленную в наружной трубе обкладку из эластомера, прилегающую к внутренней поверхности наружной трубы, при этом обкладка выполнена с внутренними винтовыми зубьями и совпадает по форме с внутренними винтовыми зубьями в наружной трубе, а толщина обкладки является максимальной на зубьях, радиально направленных внутрь, в наружной трубе максимальная толщина обкладки из эластомера вдоль впадин ее внутренней винтовой поверхности, расположенных на максимальном радиальном удалении, равна половине высоты ее внутренних винтовых зубьев, а минимальная толщина стенки наружной трубы вдоль радиально направленных наружу впадин ее внутренней винтовой поверхности равна высоте внутренних винтовых зубьев в обкладке из эластомера (RU 2373364 C2, 20.11.2009).
Основные преимущества известного статора с равномерной толщиной обкладки из эластомера (R-Wall):
- повышается нагрузочная способность статора, снижаются гистерезисные потери в обкладке, повышаются энергетические характеристики и тормозной момент двигательной секции, что исключает вероятность торможения двигателя при изменении нагрузки и повышает управляемость бурения;
- снижается количество вырабатываемого и сохраняемого тепла, натяг в соединении ротор-обкладка статора меньше зависит от температуры и деструкции ("разбухания") эластомера, обеспечиваются высокие энергетические характеристики в увеличенном интервале глубины скважины, температуры и буровых растворов на нефтяной основе;
- улучшенные энергетические характеристики двигателя позволяют эффективно использовать его с долотами PDC (Polycrystalline Diamond Compakt) с поликристаллическими алмазами;
- за счет меньшей толщины эластомера при отрыве кусков обкладки не происходит закупорки промывочных отверстий долота, вследствие этого требуемый интервал скважины может быть добурен до конца, повышается наработка на отказ (Журнал "Бурение и нефть", 11/2014, стр. 56÷59).
Неполная возможность увеличения надежности и ресурса объясняется возможностью появления дефектов в известной конструкции, в которой статор выполнен с равномерной толщиной обкладки из эластомера (R-Wall): растрескивание, отслоение, а также вырывы кусков обкладки из эластомера (резины) по краям - во входной и выходной по потоку частях обкладки из эластомера в статоре в напряженных условиях работы: при наличии в рабочей паре между ротором и обкладкой трубчатого корпуса необходимого натяга контактное давление составляет 2,5÷3 МПа, скорость скольжения составляет 0,5÷2,5 м/с, гидростатическое давление может достигать 50 МПа, а момент силы на выходном валу в режиме максимальной мощности может достигать 30 кН⋅м, причем в условиях высокой турбулентности бурового раствора, который имеет плотность до 1500 кг/м3, содержит до 2% песка и до 5% нефтепродуктов, что приводит к прекращению циркуляции, при этом основная причина отказа в компоновке низа бурильной колонны (КНБК), в которой установлена двигательная секция со шпинделем и долотом, - "резина в долоте".
Развитию упомянутых дефектов способствуют высокие рабочие перепады давления, внутреннее выделение тепла в материале обкладки статора, торможение рабочей пары при работе, высокий натяг в рабочей паре.
Увеличение длины секции рабочих пар позволяет значительно снизить уровень контактных нагрузок в зацеплении рабочей пары и предотвратить преждевременное разрушение обкладки из эластомера по краям статора.
Одновременно повышаются энергетические характеристики двигателя, надежность и ресурс. Однако увеличение длины рабочих пар ротор-статор ухудшает проходимость компоновки низа бурильной колонны при прохождении через радиусные участки ствола скважины при горизонтальном бурении.
Вследствие особенности работы героторных механизмов винтовых гидромашин по краям обкладки из эластомера вырабатывается и сохраняется дополнительное количество тепла от воздействия перекашивающих моментов ротора при его планетарно-роторном вращении внутри зубьев обкладки статора из эластомера в режиме максимальной мощности.
В результате центр профиля становится менее гибким (хрупким и ломким), механические свойства эластомера, например резины, на этих участках значительно ухудшаются, при этом давление, действующее в камерах между ротором и статором, может превысить предел сдвиговой прочности эластомера, а вершины зубьев в обкладке деформируются или отрываются от корпуса, при этом снижается возможность повышения максимальной мощности, момента силы на выходном валу в режиме максимальной мощности и усталостной выносливости (ресурса) обкладки из эластомера - не менее 100 тысяч циклов.
Вследствие этого не обеспечиваются свойства эластомера в конструкции, например усталостной выносливости при знакопеременном изгибе с вращением (ГОСТ 10952-75), остаточной деформации и усталостной выносливости при многократном сжатии (ГОСТ 20418-75), температурного предела хрупкости (ГОСТ 7912-74), истирания при скольжении (ГОСТ 426-77).
Другим недостатком известной конструкции является неполная возможность увеличения надежности и ресурса за счет обеспечения равнопрочных и герметичных резьбовых соединений трубчатого корпуса статора с переводником и/или переходником в условиях интенсивного трения и вращения в стволе скважины, с использованием в колонне бурильных труб гидравлических ясов, с ударными нагрузками и ударными импульсами от ясов, а также при релаксации растягивающих напряжений в изогнутой колонне бурильных труб, в которой установлен статор винтовой героторной гидромашины.
Упомянутый недостаток известной конструкции объясняется повышенной жесткостью трубчатого корпуса при использовании его в статоре гидравлического забойного двигателя, по существу, большим значением коэффициента напряжения при изгибе (Stress ratio, отношение изменяющейся амплитуды напряжения к среднему напряжению) в местах стыка резьбовых соединений трубчатого корпуса с переводником и/или переходником, равным 7÷9, а также большой вероятностью образования трещин на резьбах и поломки резьбовых соединений трубчатого корпуса при использовании забойного двигателя в горизонтальных управляемых компоновках низа бурильной колонны, на участках изменения кривизны наклонной скважины, преимущественно в режиме максимальной мощности.
Вследствие повышенной жесткости трубчатого корпуса статора не полностью обеспечивается возможность повышения точности проходки наклонных и горизонтальных скважин, повышения темпа набора параметров кривизны скважин, а также улучшения проходимости, т.е. уменьшения сопротивления и напряжений в компоновке низа бурильной колонны за счет изгиба трубчатого корпуса забойного двигателя при прохождении через радиусные участки ствола скважины, имеющие участки малого и среднего радиуса 30÷300 м, в условиях интенсивного трения по стволу скважины.
Вследствие этого требуемый интервал скважин не может быть добурен до конца, например, в скважинах, в интервале бурения 2500÷3500 м, имеющих боковые горизонтальные стволы в интервале 750÷1500 м, при этом не повышается наработка на отказ, не обеспечиваются существенные экономические преимущества известной конструкции.
Технической задачей изобретения является повышение надежности и ресурса статора винтовой героторной гидромашины при использовании в гидравлическом забойном двигателе для бурения нефтяных скважин за счет повышения усталостной выносливости, абразивной стойкости, упругости и герметичности уплотнения рабочей пары: ротор-обкладка из эластомера в статоре путем предотвращения растрескивания, отслоения и вырывов кусков обкладки во входной и выходной части в статоре за счет того, что обкладка из эластомера выше по потоку от края внутренних винтовых зубьев, направленного против потока, выполнена с входным демпфером из эластомера с собственными внутренними винтовыми зубьями с возможностью скрепления с обкладкой, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными против потока, и внутренней поверхностью входной по потоку части трубчатого корпуса, а также за счет того, что ниже по потоку от края внутренних винтовых зубьев обкладка выполнена с выходным демпфером из эластомера с собственными внутренними винтовыми зубьями, с возможностью скрепления с обкладкой, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными по потоку, и внутренней поверхностью выходной по потоку части трубчатого корпуса.
Другой технической задачей изобретения является повышение точности проходки наклонных и горизонтальных скважин, повышение темпа набора параметров кривизны скважин, а также улучшение проходимости, т.е. уменьшение сопротивления и напряжений в компоновке низа бурильной колонны при использовании в гидравлическом забойном двигателе за счет уменьшения жесткости трубчатого корпуса - выполнения стенки трубчатого корпуса во входной и выходной частях с поясом пониженной жесткости, характеризующимся уменьшенной толщиной, что обеспечивает изгиб трубчатого корпуса статора при прохождении через радиусные участки ствола скважины, имеющие участки малого и среднего радиуса 30÷300 м, в условиях интенсивного трения по стволу скважины.
Сущность технического решения заключается в том, что в статоре винтовой героторной гидромашины, например двигателя для вращения ротора от насосной подачи текучей среды или насоса для подачи текучей среды за счет вращения ротора, содержащем трубчатый корпус с внутренней поверхностью, выполненной в форме геликоида с внутренними винтовыми зубьями, на каждом краю трубчатого корпуса выполнена внутренняя резьба, а также содержащем закрепленную в трубчатом корпусе обкладку из эластомера, прилегающую к внутренней поверхности трубчатого корпуса, обкладка из эластомера выполнена с внутренними винтовыми зубьями и совпадает по форме с внутренними винтовыми зубьями в трубчатом корпусе, а толщина обкладки является максимальной на зубьях, радиально направленных внутрь, при этом в трубчатом корпусе максимальная толщина обкладки из эластомера вдоль впадин ее внутренней винтовой поверхности, расположенных на максимальном радиальном удалении, равна половине высоты ее внутренних винтовых зубьев, а минимальная толщина стенки трубчатого корпуса вдоль радиально направленных наружу впадин ее внутренней винтовой поверхности равна высоте внутренних винтовых зубьев в обкладке из эластомера, согласно изобретению обкладка из эластомера содержит во входной по потоку части трубчатого корпуса, выше по потоку от края внутренних винтовых зубьев, направленного против потока, входной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, прилегающий к внутренней поверхности входной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными против потока, и внутренней поверхностью входной по потоку части трубчатого корпуса, при этом ниже по потоку от края внутренних винтовых зубьев трубчатого корпуса в выходной по потоку части трубчатого корпуса обкладка из эластомера содержит выходной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, размещенный внутри трубчатого корпуса, прилегающий к внутренней поверхности выходной по потоку части трубчатого корпуса с
возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными по потоку, и внутренней поверхностью выходной по потоку части трубчатого корпуса, при этом минимальная толщина входного и выходного демпферов из эластомера вдоль впадин их внутренних винтовых зубьев, расположенных на максимальном радиальном удалении, равна толщине обкладки из эластомера на ее зубьях, радиально направленных внутрь.
Статор содержит во входной по потоку части трубчатого корпуса пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев переднего кольцевого демпфера, направленных против потока, и полным последним витком внутренней резьбы входной по потоку части трубчатого корпуса, а в выходной по потоку части трубчатого корпуса содержит пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев выходного демпфера из эластомера и полным последним витком внутренней резьбы в выходной по потоку части трубчатого корпуса, при этом отношение уменьшенной толщины стенки трубчатого корпуса во входной по потоку части трубчатого корпуса, а также в выходной по потоку части трубчатого корпуса к наружному диаметру трубчатого корпуса составляет 0,065÷0,095.
Выполнение статора винтовой героторной гидромашины таким образом, что он содержит во входной по потоку части трубчатого корпуса, выше по потоку от края внутренних винтовых зубьев, направленного против потока, входной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, прилегающий к внутренней поверхности входной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными против потока, и внутренней поверхностью входной по потоку части трубчатого корпуса, при этом ниже по потоку от края внутренних винтовых зубьев трубчатого корпуса в выходной по потоку части трубчатого корпуса обкладка из эластомера содержит выходной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, размещенный внутри трубчатого корпуса, прилегающий к внутренней поверхности выходной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными по потоку, и внутренней поверхностью выходной по потоку части трубчатого корпуса, при этом минимальная толщина входного и выходного демпферов из эластомера вдоль впадин их внутренних винтовых зубьев, расположенных на максимальном радиальном удалении, равна толщине обкладки из эластомера на ее зубьях, радиально направленных внутрь, обеспечивает повышение усталостной выносливости, абразивной стойкости, упругости и герметичности уплотнения рабочей пары: ротор-обкладка из эластомера в статоре за счет предотвращения растрескивания, отслоения и вырывов кусков обкладки из эластомера во входной и выходной по потоку текучей среды части обкладки из эластомера в статоре, вследствие этого обеспечивает повышение надежности и ресурса статора винтовой героторной гидромашины при использовании в гидравлическом забойном двигателе для бурения нефтяных и газовых скважин в условиях высокой турбулентности бурового раствора, который имеет плотность до 1500 кг/м3, содержит до 2% песка и до 5% нефтепродуктов, за счет предотвращения закупорки промывочного узла бурового долота, по существу, за счет предотвращения основного отказа компоновки низа бурильной колонны (КНБК) при бурении скважин по причине - "резина в долоте", вследствие этого требуемый интервал скважины может быть добурен до конца, повышается наработка на отказ, обеспечиваются существенные экономические преимущества заявляемой конструкции.
Выполнение статора винтовой героторной гидромашины таким образом, что он содержит во входной по потоку части трубчатого корпуса пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев переднего кольцевого демпфера, направленных против потока, и полным последним витком внутренней резьбы входной по потоку части трубчатого корпуса, а в выходной по потоку части трубчатого корпуса содержит пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев выходного демпфера из эластомера и полным последним витком внутренней резьбы в выходной по потоку части трубчатого корпуса, при этом отношение уменьшенной толщины стенки трубчатого корпуса во входной по потоку части трубчатого корпуса, а также в выходной по потоку части трубчатого корпуса к наружному диаметру трубчатого корпуса составляет 0,065÷0,095, обеспечивает повышение точности проходки наклонных и горизонтальных скважин, повышение темпа набора параметров кривизны скважин, а также улучшение проходимости, т.е. уменьшение сопротивления и напряжений в компоновке низа бурильной колонны при использовании в гидравлическом забойном двигателе за счет уменьшения жесткости трубчатого корпуса - выполнения стенки трубчатого корпуса во входной и выходной по потоку текучей среды частях с поясом пониженной жесткости, характеризующимся уменьшенной толщиной, что обеспечивает изгиб трубчатого корпуса статора при прохождении через радиусные участки ствола скважины, имеющие участки малого и среднего радиуса 30…300 м, в условиях интенсивного трения по стволу скважины.
Ниже представлен лучший вариант конструкции статора с одинаковой толщиной обкладки из эластомера (R-Wall) двигательной секции винтового забойного двигателя ДРУ2-172 PC для бурения нефтяных скважин.
На фиг. 1 показан продольный разрез статора винтового героторного гидравлического двигателя.
На фиг. 2 показан разрез А-А на фиг. 1 поперек входного демпфера из эластомера во входной части трубчатого корпуса, число винтовых зубьев входного демпфера равно 7.
На фиг. 3 показан разрез Б-Б на фиг. 1 поперек трубчатого корпуса с внутренними винтовыми зубьями и обкладкой из эластомера, число винтовых зубьев обкладки и корпуса равно 7.
На фиг. 4 показан разрез В-В на фиг. 1 поперек выходного демпфера из эластомера в выходной части трубчатого корпуса, число винтовых зубьев выходного демпфера равно 7.
На фиг. 5 показан продольный разрез двигательной секции, включающей ротор, установленный внутри входного демпфера, обкладки и выходного демпфера, все из эластомера, внутри трубчатого корпуса.
На фиг. 6 показан разрез Г-Г на фиг. 5 поперек двигательной секции, включающей входной демпфер из эластомера и ротор, отношение чисел зубьев ротор-входной демпфер равно 6/7.
На фиг. 7 показан разрез Д-Д на фиг. 5 поперек двигательной секции, включающей статор с обкладкой из эластомера и ротор, отношение чисел зубьев ротор-обкладка равно 6/7.
На фиг. 8 показан разрез Е-Е на фиг. 5 поперек двигательной секции, включающей выходной демпфер из эластомера и ротор, отношение чисел зубьев ротор-выходной демпфер равно 6/7.
Статор винтовой героторной гидромашины, например винтового забойного двигателя для вращения ротора от насосной подачи текучей среды (бурового раствора), содержит трубчатый корпус 1 с внутренней поверхностью 2, выполненной в форме геликоида, по существу, с внутренними винтовыми зубьями 3, на входном по потоку текучей среды 4 краю 5 трубчатого корпуса 1 выполнена внутренняя коническая трубная резьба 6, например, РКТ154х6,35х1:9,6 СТП 001-2007, на выходном по потоку текучей среды 4 краю 7 трубчатого корпуса 1 выполнена внутренняя коническая трубная резьба 8, например, РКТ154x6,35x1:9,6 СТП 001-2007, а также содержит закрепленную в трубчатом корпусе 1 обкладку 9 из эластомера, например из резины ИРП-1226-5, прилегающую к внутренней поверхности 2 трубчатого корпуса 1, при этом обкладка 9 из эластомера выполнена с внутренними винтовыми зубьями 10 и совпадает по форме с внутренними винтовыми зубьями 3 в трубчатом корпусе 1, а толщина 11 обкладки 9 является максимальной на ее зубьях 10, радиально направленных внутрь, по сравнению с толщиной 12 впадин 13 вдоль внутренней винтовой поверхности 14 упомянутой обкладки 9, изображено на фиг. 1, 2, 4.
В трубчатом корпусе 1 максимальная толщина 12 обкладки 9 из эластомера вдоль впадин 13 ее внутренней винтовой поверхности 14, расположенных на максимальном радиальном удалении 15, равна половине высоты 16 ее внутренних винтовых зубьев 10, при этом минимальная толщина 17 стенки трубчатого корпуса 1 вдоль радиально направленных наружу впадин 18 ее внутренней винтовой поверхности 2 равна высоте 16 внутренних винтовых зубьев 10 в обкладке 9 из эластомера, изображено на фиг.1, 2, 4.
Обкладка 9 из эластомера содержит во входной по потоку 4 части 5 трубчатого корпуса 1, выше по потоку 4 от края 19 внутренних винтовых зубьев 3 в трубчатом корпусе 1, направленного против потока 4, входной демпфер 20 из эластомера с собственными внутренними винтовыми зубьями 21, примыкающими к внутренним винтовым зубьям 10 обкладки 9 из эластомера, прилегающий к внутренней поверхности 22 входной по потоку 4 части 5 трубчатого корпуса 1, с возможностью скрепления с обкладкой 9 из эластомера, боковыми поверхностями 23 внутренних винтовых зубьев 3 трубчатого корпуса 1, направленными против потока 4, и внутренней поверхностью 22 входной по потоку 4 части 5 трубчатого корпуса 1, при этом боковая (лобовая) поверхность 24 входного демпфера 20 из эластомера с собственными внутренними винтовыми зубьями 21, направленными против потока текучей среды 4, выполнена в виде фаски 25, уменьшающей гидравлическое сопротивление обкладки 9 из эластомера в потоке текучей среды 4 и предотвращающей растрескивание и отслоение входной кромки 26 во входном демпфере 20 из эластомера в потоке текучей среды 4 (бурового раствора) внутри трубчатого корпуса 1, изображено на фиг. 1, 2, 3.
Ниже по потоку 4 от края 27 внутренних винтовых зубьев 3 трубчатого корпуса 1 в выходной по потоку 4 части 7 трубчатого корпуса 1 обкладка 9 из эластомера содержит выходной демпфер 28 из эластомера с собственными внутренними винтовыми зубьями 29, примыкающими к внутренним винтовым зубьям 10 обкладки 9 из эластомера, размещенный внутри трубчатого корпуса 1, прилегающий к внутренней поверхности 30 выходной по потоку 4 части 7 трубчатого корпуса 1 с возможностью скрепления с обкладкой 9 из эластомера, боковыми (задними по потоку текучей среды) поверхностями 31 внутренних винтовых зубьев 3 трубчатого корпуса 1, направленными по потоку 4, и внутренней поверхностью 30 выходной по потоку 4 части 7 трубчатого корпуса 1, при этом боковая (задняя по потоку текучей среды) поверхность 32 внутренних винтовых зубьев 26 выходного демпфера 25 из эластомера, направленных по потоку текучей среды 4, выполнена в виде фаски 33, уменьшающей гидравлическое сопротивление (в зоне обратных токов текучей среды) выходного демпфера 28 из эластомера и предотвращающей растрескивание и отслоение выходной кромки 34 в выходном демпфере 28 из эластомера в потоке текучей среды 4 (бурового раствора) внутри трубчатого корпуса 1, изображено на фиг. 1, 3, 4.
Минимальная толщина 35 входного демпфера 20 из эластомера вдоль впадин 36 его внутренних винтовых зубьев 21, расположенных на максимальном радиальном удалении 37, равна толщине 11 обкладки 9 из эластомера на ее зубьях 10, радиально направленных внутрь, изображено на фиг. 1, 2, 3.
Минимальная толщина 38 выходного демпфера 28 из эластомера вдоль впадин 39 его внутренних винтовых зубьев 29, расположенных на максимальном радиальном удалении 40, равна толщине 11 обкладки 9 из эластомера на ее зубьях 10, радиально направленных внутрь, изображено на фиг. 1, 3, 4.
Статор содержит во входной по потоку 4 части 5 трубчатого корпуса 1 пояс 41 пониженной жесткости, характеризующийся выполнением стенки 42 трубчатого корпуса 1 уменьшенной толщиной 43, расположенный между краем 26 внутренних винтовых зубьев 21 переднего кольцевого демпфера 20, направленным против потока 4, и полным последним витком 44 внутренней резьбы 6 входной по потоку 4 части 5 трубчатого корпуса 1, изображено на фиг. 1, 2.
Статор содержит в выходной по потоку 4 части 7 трубчатого корпуса 1 пояс 45 пониженной жесткости, характеризующийся выполнением стенки 46 трубчатого корпуса 1 уменьшенной толщиной 47, расположенный между краем 34 внутренних винтовых зубьев 29 выходного демпфера 28 из эластомера и полным последним витком 48 внутренней резьбы 8 в выходной по потоку 4 части 7 трубчатого корпуса 1, изображено на фиг. 1, 4.
Отношение уменьшенной толщины 43 стенки 42 трубчатого корпуса 1 во входной по потоку 4 части 5 трубчатого корпуса 1, а также отношение уменьшенной толщины 47 стенки 46 трубчатого корпуса 1 в выходной по потоку 4 части 7 трубчатого корпуса 1 к наружному диаметру 49 трубчатого корпуса 1 составляет 0,065÷0,095, изображено на фиг. 1, 2, 4.
В состав двигательной секции входит ротор 50, имеющий винтовые зубья 51, число зубьев 51 ротора 50 на единицу меньше числа зубьев 10 обкладки 9 из эластомера, а также числа зубьев 21 входного демпфера 22 из эластомера, а также числа зубьев 29 выходного демпфера 28 из эластомера, отношение чисел зубьев ротор 50 - обкладка 9 из эластомера, а также ротор 50 - входной демпфер 22 из эластомера, а также ротор 50 - выходной демпфер 28 из эластомера равно 6/7, при этом поз. 52 - центральная продольная ось ротора 50, поз.53 - центральная продольная ось обкладки 9 из эластомера, закрепленной внутри трубчатого корпуса 1, а также входного демпфера 20 из эластомера, а также выходного демпфера 28 из эластомера, при этом поз. 54 - величина эксцентриситета ротора 50, установленного в обкладке 9 из эластомера внутри трубчатого корпуса 1, скрепленной с внутренней поверхностью трубчатого корпуса 1, а также установленного во входном демпфере 20 из эластомера, а также установленного в выходном демпфере 28 из эластомера, изображено на фиг. 6, 7, 8, 9.
Твердость обкладки 9 из эластомера, а также входного и выходного кольцевых демпферов, соответственно, 20 и 28, например из резины ИРП-1226-5, составляет 75±3 ед. Шор А.
Кроме того, поз.55 - многозаходные винтовые камеры между зубьями 51 ротора 50 и зубьями 21 входного демпфера 20 эластомера, поз.56 - многозаходные винтовые камеры между зубьями 51 ротора 50 и зубьями 10 обкладки 9 из эластомера, поз. 57 - многозаходные винтовые камеры между зубьями ротора 50 и зубьями 29 выходного демпфера 28 из эластомера изображено на фиг. 6, 7, 8.
Статор с равномерной толщиной обкладки 9 из эластомера (R-Wall) входит в модуль двигательной секции винтового забойного двигателя для бурения нефтяной скважины, включающего карданную трансмиссию и шпиндельную секцию с долотом для бурения скважины (не изображенными).
Конструкция статора при использовании в винтовом забойном двигателе для бурения скважины работает следующим образом: поток бурового раствора 4 под давлением, например, 25+35 МПа по колонне бурильных труб подается в многозаходные винтовые камеры 55 между зубьями 51 ротора 50 и зубьями 21 входного демпфера 20 из эластомера во входной по потоку текучей среды - бурового раствора 4 части 5 трубчатого корпуса 1, далее - в многозаходные винтовые камеры 56 между зубьями 51 ротора 50 и зубьями 10 обкладки 9 из эластомера, закрепленной внутри трубчатого корпуса 1, далее - в многозаходные винтовые камеры 57 между зубьями 51 ротора 50 и зубьями 29 выходного демпфера 28 в выходной по потоку текучей среды 4 части 7 трубчатого корпуса 1,
Многозаходные винтовые камеры 55 между зубьями 51 ротора 50 и зубьями 21 входного демпфера 20 из эластомера во входной по потоку текучей среды - бурового раствора 4 части 5 трубчатого корпуса 1, многозаходные винтовые камеры 56 между зубьями 51 ротора 50 и зубьями 10 обкладки 9 из эластомера, закрепленной внутри трубчатого корпуса 1, а также многозаходные винтовые камеры 57 между зубьями 51 ротора 50 и зубьями 29 выходного демпфера 28 в выходной по потоку текучей среды 4 части 7 трубчатого корпуса 1, имеют переменный объем и периодически перемещаются по потоку 4 текучей среды - бурового раствора, который имеет плотность до 1500 кг/м3, содержит до 2% песка и до 5% нефтепродуктов, при этом образуется область высокого давления и вращающий момент от гидравлических сил, который приводит в планетарно-роторное вращение ротор 50 внутри входного демпфера 20 из эластомера с собственными внутренними винтовыми зубьями 21, примыкающими к внутренним винтовым зубьям 10 обкладки 9 из эластомера во входной по потоку 4 текучей среды части 5 трубчатого корпуса 1, внутри обкладки 9 из эластомера с внутренними винтовыми зубьями 10, а также внутри выходного демпфера 28 из эластомера с собственными внутренними винтовыми зубьями 29 в выходной по потоку 4 части 7 трубчатого корпуса 1.
Ротор 50 под действием насосной подачи текучей чреды передает вращающий момент на вал шпиндельной секции с долотом в противоположном направлении относительно собственного планетарно-роторного вращения внутри входного демпфера 20 из эластомера во входной по потоку 4 части 5 трубчатого корпуса 1, внутри обкладки 9 из эластомера, закрепленной в трубчатом корпусе 1, а также внутри выходного демпфера 28 из эластомера с собственными внутренними винтовыми зубьями 29 в выходной по потоку 4 части 7 трубчатого корпуса 1, осуществляя бурение скважины.
Винтовые зубья 21 входного демпфера 20 из эластомера во входной по потоку 4 части 5 трубчатого корпуса 1, винтовые зубья 10 обкладки из эластомера, закрепленной внутри трубчатого корпуса 1, а также винтовые зубья 29 выходного демпфера 28 в выходной по потоку 4 части 7 трубчатого корпуса 1 подвергаются сложной деформации и изгибу при планетарно-роторном вращении ротора 50 внутри входного демпфера 20 из эластомера во входной по потоку текучей среды - бурового раствора 4 части 5 трубчатого корпуса 1, внутри обкладки 9 из эластомера, закрепленной в трубчатом корпусе 1, а также внутри выходного демпфера 28 из эластомера с внутренними винтовыми зубьями 29 в выходной по потоку 4 части 7 трубчатого корпуса 1.
В заявляемой конструкции за счет того, что обкладка 9 из эластомера содержит во входной по потоку 4 части 5 трубчатого корпуса 1, выше по потоку 4 от края 19 внутренних винтовых зубьев 3 в трубчатом корпусе 1, направленного против потока 4, входной демпфер 20 из эластомера с собственными внутренними винтовыми зубьями 21, примыкающими к внутренним винтовым зубьям 10 обкладки 9 из эластомера, прилегающий к внутренней поверхности 22 входной по потоку 4 части 5 трубчатого корпуса 1, с возможностью скрепления с обкладкой 9 из эластомера, боковыми поверхностями 23 внутренних винтовых зубьев 3 трубчатого корпуса 1, направленными против потока 4, и внутренней поверхностью 22 входной по потоку 4 части 5 трубчатого корпуса 1, при этом боковая (лобовая) поверхность 24 входного демпфера 20 из эластомера с собственными внутренними винтовыми зубьями 21, направленными против потока текучей среды 4, выполнена в виде фаски 25, уменьшающей гидравлическое сопротивление обкладки 9 из эластомера в потоке текучей среды 4 и предотвращающей растрескивание и отслоение входной кромки 26 во входном демпфере 20 из эластомера в потоке текучей среды 4 (бурового раствора) внутри трубчатого корпуса 1, при этом ниже по потоку 4 от края 27 внутренних винтовых зубьев 3 трубчатого корпуса 1 в выходной по потоку 4 части 7 трубчатого корпуса 1 обкладка 9 из эластомера содержит выходной демпфер 28 из эластомера с собственными внутренними винтовыми зубьями 29, примыкающими к внутренним винтовым зубьям 10 обкладки 9 из эластомера, размещенный внутри трубчатого корпуса 1, прилегающий к внутренней поверхности 30 выходной по потоку 4 части 7 трубчатого корпуса 1 с возможностью скрепления с обкладкой 9 из эластомера, боковыми (задними по потоку текучей среды) поверхностями 31 внутренних винтовых зубьев 3 трубчатого корпуса 1, направленными по потоку 4, и внутренней поверхностью 30 выходной по потоку 4 части 7 трубчатого корпуса 1, при этом боковая (задняя по потоку) поверхность 32 внутренних винтовых зубьев 26 выходного демпфера 25 из эластомера, направленных по потоку текучей среды 4, выполнена в виде фаски 33, уменьшающей гидравлическое сопротивление (в зоне обратных токов текучей среды) выходного демпфера 28 из эластомера и предотвращающей растрескивание и отслоение выходной кромки 34 в выходном демпфере 28 из эластомера в потоке текучей среды 4 (бурового раствора) внутри трубчатого корпуса 1, обеспечиваются зоны повышенной сдвиговой прочности, обеспечивается уменьшение градиента температур при выделении тепла внутри материала зубьев из эластомера, улучшается отвод внутреннего тепла входного демпфера 20 из эластомера, обкладки 9 из эластомера, а также выходного демпфера 28 из эластомера к потоку текучей среды 4 внутри трубчатого корпуса 1, а также сквозь стенки трубчатого корпуса 1 к буровому раствору с внешней стороны трубчатого корпуса 1 (затрубного пространства), поток которого направлен от забоя (от долота) к устью скважины.
Вследствие этого повышаются упругопрочностные свойства эластомера в конструкции: усталостная выносливость при знакопеременном изгибе с вращением (ГОСТ 10952-75), остаточная деформация и усталостная выносливость при многократном сжатии (ГОСТ 20418-75), температурный предел хрупкости (ГОСТ 7912-74), истирание при скольжении (ГОСТ 426-77), снижается вероятность растрескивания, отслоения и вырывов кусков обкладки из эластомера во входной и выходной по потоку части обкладки из эластомера в статоре, предотвращается закупорка промывочного узла бурового долота, устраняется основной отказ компоновки низа бурильной колонны (КНБК) при бурении скважин по причине - "резина в долоте", при этом требуемый интервал скважины может быть добурен до конца, повышается наработка на отказ, обеспечиваются существенные экономические преимущества заявляемой конструкции.
В заявляемой конструкции за счет того, что статор содержит во входной по потоку 4 части 5 трубчатого корпуса 1 пояс 41 пониженной жесткости, характеризующийся выполнением стенки 42 трубчатого корпуса 1 уменьшенной толщиной 43, расположенный между краем 26 внутренних винтовых зубьев 21 переднего кольцевого демпфера 20, направленным против потока 4, и полным последним витком 44 внутренней резьбы 6 входной по потоку 4 части 5 трубчатого корпуса 1, а также за счет того, что статор содержит в выходной по потоку 4 части 7 трубчатого корпуса 1 пояс 45 пониженной жесткости, характеризующийся выполнением стенки 46 трубчатого корпуса 1 уменьшенной толщиной 47, расположенный между краем 34 внутренних винтовых зубьев 29 выходного демпфера 28 из эластомера и полным последним витком 48 внутренней резьбы 8 в выходной по потоку 4 части 7 трубчатого корпуса 1, а отношение уменьшенной толщины 43 стенки 42 трубчатого корпуса 1 во входной по потоку 4 части 5 трубчатого корпуса 1, при этом отношение уменьшенной толщины 47 стенки 46 трубчатого корпуса 1 в выходной по потоку 4 части 7 трубчатого корпуса 1 к наружному диаметру 49 трубчатого корпуса 1 составляет 0,065÷0,095, обеспечивается повышение точности проходки наклонных и горизонтальных скважин, обеспечивается повышение темпа набора параметров кривизны скважин, а также улучшение проходимости, т.е. уменьшение сопротивления и напряжений в компоновке низа бурильной колонны при использовании в гидравлическом забойном двигателе за счет уменьшения жесткости трубчатого корпуса - выполнения стенки трубчатого корпуса во входной и выходной по потоку текучей среды частях с поясом пониженной жесткости, характеризующимся уменьшенной толщиной, что обеспечивает изгиб трубчатого корпуса статора при прохождении через радиусные участки ствола скважины, имеющие участки малого и среднего радиуса 30…300 м, в условиях интенсивного трения по стволу скважины.
Изобретение повышает надежность и ресурс при использовании в гидравлическом забойном двигателе для бурения изогнутых скважин за счет повышения усталостной выносливости, абразивной стойкости, упругости и герметичности уплотнения рабочей пары: ротор-обкладка из эластомера в статоре путем предотвращения растрескивания, отслоения и вырывов кусков обкладки из эластомера во входной и выходной части обкладки из эластомера в статоре, за счет этого предотвращается закупорка промывочного узла бурового долота, вследствие этого требуемый интервал скважины может быть добурен до конца, повышается наработка на отказ, обеспечиваются существенные экономические преимущества заявляемой конструкции.
Изобретение повышает также точность проходки наклонных и горизонтальных скважин, темп набора параметров кривизны скважин, а также улучшает проходимость, т.е. уменьшает сопротивления и напряжения в компоновке низа бурильной колонны при использовании в гидравлическом забойном двигателе за счет уменьшения жесткости трубчатого корпуса - выполнения стенки трубчатого корпуса во входной и выходной частях с поясом пониженной жесткости, характеризующимся уменьшенной толщиной, что обеспечивает изгиб трубчатого корпуса при прохождении через радиусные участки ствола скважины в условиях интенсивного трения по стволу скважины.
название | год | авторы | номер документа |
---|---|---|---|
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2017 |
|
RU2652725C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2018 |
|
RU2689014C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2020 |
|
RU2745677C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2019 |
|
RU2723595C1 |
ГИДРАВЛИЧЕСКИЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ | 2017 |
|
RU2669438C1 |
ГИДРАВЛИЧЕСКИЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ | 2018 |
|
RU2688824C1 |
ГИДРАВЛИЧЕСКИЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ | 2019 |
|
RU2710338C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРАВЛИЧЕСКОЙ МАШИНЫ | 2006 |
|
RU2318135C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРАВЛИЧЕСКОЙ МАШИНЫ | 2006 |
|
RU2327025C1 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРАВЛИЧЕСКОЙ МАШИНЫ | 2006 |
|
RU2315201C1 |
Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах. Статор содержит трубчатый корпус с внутренней поверхностью, выполненной в форме геликоида с внутренними винтовыми зубьями, на каждом краю трубчатого корпуса выполнена внутренняя резьба, а также содержит закрепленную в трубчатом корпусе обкладку из эластомера, прилегающую к внутренней поверхности трубчатого корпуса, обкладка из эластомера выполнена с внутренними винтовыми зубьями и совпадает по форме с внутренними винтовыми зубьями в трубчатом корпусе, а толщина обкладки является максимальной на зубьях, радиально направленных внутрь. В трубчатом корпусе максимальная толщина обкладки из эластомера вдоль впадин ее внутренней винтовой поверхности, расположенных на максимальном радиальном удалении, равна половине высоты ее внутренних винтовых зубьев, а минимальная толщина стенки трубчатого корпуса вдоль радиально направленных наружу впадин ее внутренней винтовой поверхности равна высоте внутренних винтовых зубьев в обкладке из эластомера. Обкладка из эластомера содержит во входной по потоку части трубчатого корпуса, выше по потоку от края внутренних винтовых зубьев, направленного против потока, входной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, прилегающий к внутренней поверхности входной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными против потока, и внутренней поверхностью входной по потоку части трубчатого корпуса. Ниже по потоку от края внутренних винтовых зубьев трубчатого корпуса в выходной по потоку части трубчатого корпуса обкладка из эластомера содержит выходной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, размещенный внутри трубчатого корпуса, прилегающий к внутренней поверхности выходной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными по потоку, и внутренней поверхностью выходной по потоку части трубчатого корпуса. Минимальная толщина входного и выходного демпферов из эластомера вдоль впадин их внутренних винтовых зубьев, расположенных на максимальном радиальном удалении, равна толщине обкладки из эластомера на ее зубьях, радиально направленных внутрь. Повышается надежность и ресурс, точность проходки наклонных и горизонтальных скважин, темп набора параметров кривизны скважин, а также улучшается проходимость, т.е. уменьшаются сопротивления и напряжения в компоновке низа бурильной колонны. 1 з.п. ф-лы, 8 ил.
1. Статор винтовой героторной гидромашины, например двигателя для вращения ротора от насосной подачи текучей среды или насоса для подачи текучей среды за счет вращения ротора, содержащий трубчатый корпус с внутренней поверхностью, выполненной в форме геликоида с внутренними винтовыми зубьями, на каждом краю трубчатого корпуса выполнена внутренняя резьба, а также содержащий закрепленную в трубчатом корпусе обкладку из эластомера, прилегающую к внутренней поверхности трубчатого корпуса, обкладка из эластомера выполнена с внутренними винтовыми зубьями и совпадает по форме с внутренними винтовыми зубьями в трубчатом корпусе, а толщина обкладки является максимальной на зубьях, радиально направленных внутрь, при этом в трубчатом корпусе максимальная толщина обкладки из эластомера вдоль впадин ее внутренней винтовой поверхности, расположенных на максимальном радиальном удалении, равна половине высоты ее внутренних винтовых зубьев, а минимальная толщина стенки трубчатого корпуса вдоль радиально направленных наружу впадин ее внутренней винтовой поверхности равна высоте внутренних винтовых зубьев в обкладке из эластомера, отличающийся тем, обкладка из эластомера содержит во входной по потоку части трубчатого корпуса, выше по потоку от края внутренних винтовых зубьев, направленного против потока, входной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, прилегающий к внутренней поверхности входной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными против потока, и внутренней поверхностью входной по потоку части трубчатого корпуса, при этом ниже по потоку от края внутренних винтовых зубьев трубчатого корпуса в выходной по потоку части трубчатого корпуса обкладка из эластомера содержит выходной демпфер из эластомера с собственными внутренними винтовыми зубьями, примыкающими к внутренним винтовым зубьям обкладки из эластомера, размещенный внутри трубчатого корпуса, прилегающий к внутренней поверхности выходной по потоку части трубчатого корпуса с возможностью скрепления с обкладкой из эластомера, боковыми поверхностями внутренних винтовых зубьев трубчатого корпуса, направленными по потоку, и внутренней поверхностью выходной по потоку частью трубчатого корпуса, при этом минимальная толщина входного и выходного демпферов из эластомера вдоль впадин их внутренних винтовых зубьев, расположенных на максимальном радиальном удалении, равна толщине обкладки из эластомера на ее зубьях, радиально направленных внутрь.
2. Статор винтовой героторной гидромашины по п. 1, отличающийся тем, что содержит во входной по потоку части трубчатого корпуса пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев переднего кольцевого демпфера, направленных против потока, и полным последним витком внутренней резьбы входной по потоку части трубчатого корпуса, а в выходной по потоку части трубчатого корпуса содержит пояс пониженной жесткости, характеризующийся выполнением стенки трубчатого корпуса уменьшенной толщиной, расположенный между краем внутренних винтовых зубьев выходного демпфера из эластомера и полным последним витком внутренней резьбы в выходной по потоку части трубчатого корпуса, при этом отношение уменьшенной толщины стенки трубчатого корпуса во входной по потоку части трубчатого корпуса, а также в выходной по потоку части трубчатого корпуса к наружному диаметру трубчатого корпуса составляет 0,065÷0,095.
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2005 |
|
RU2373364C2 |
СТАТОР ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ | 2005 |
|
RU2283442C1 |
СТАТОР ВИНТОВОГО ЗАБОЙНОГО ДВИГАТЕЛЯ | 2008 |
|
RU2351730C1 |
0 |
|
SU161029A1 | |
Устройство для нагнетания густых растворов и тому подобного в наносящие сопла | 1947 |
|
SU73015A2 |
WO 2001044615 A2, 21.06.2001. |
Авторы
Даты
2018-04-28—Публикация
2017-05-10—Подача