Предлагаемое изобретение относится к измерительной технике, в частности к измерению температуры и давления.
Известен способ измерения температуры термометром сопротивления [а.с. №1332158], который приводят в контакт с объектом контроля. Подают на термометр сопротивления мощность P1 и в момент времени t1 измеряют первое значение температуры θ1 и увеличивают мощность до величины Р2. В моменты времени Т2 и Т3 проводят второе и третье измерение температуры θ2 и θ3. Измерение температур организовано так, что Т2-Т1=Т3-Т2. Значение измеряемой температуры рассчитывается по формуле
Недостатками данного метода являются неопределенность условий и параметров, при которых проводится градуировка термометра сопротивления. При градуировке термометра сопротивления при различных величинах рассеиваемой мощности градуировочные характеристики получаются разными. Также большое влияние оказывают параметры теплообмена со средой, в которой проводится градуировка термометра сопротивления. Неучет этих факторов в процессе измерения температуры приводит к погрешности.
За прототип принят способ дистанционного измерения давления и температуры в скважине одним датчиком [см. патент РФ №2118802, G01K 7/16, G01L 1/22, Коловертнов Ю.Д. и др.], включающий подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали. При смене направления тока питания тензомоста совмещают питающую и измерительную диагонали и измеряют второе напряжение, а значения давления и температуры определяют из соотношений
,
.
Устройство для дистанционного измерения давления и температуры в скважине одним датчиком, содержащее тензомост, четырехпроводную линию связи, двухполярный источник тока, измерительно-вычислительное устройство, снабжено двумя развязывающими диодными цепочками, подключенными одними выводами через провода линии связи к двухполярному источнику тока, а другими двумя выводами параллельно тензорезисторам, включенным в противоположные плечи тензомоста.
Прототип обладает существенными недостатками: невозможностью автоматизации в адаптивном диапазоне из-за ручного подбора коэффициентов статистической градуировки, снижающей точность и оперативность способа.
Технической задачей предлагаемого решения является автоматизация измерения давления, температуры и объема за счет использования калибровочных характеристик, снижающих до минимума методическую погрешность.
Поставленная задача достигается тем, что
1) способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+. При смене направления тока питания тензомоста измеряют напряжение U-. В отличие от прототипа действительные значения температуры Т и давления P измеряют по калибровочным характеристикам от сопротивления R, параметрами которых служат предельные сопротивления температуры RT, давления RP и соответствующие им предельные температура Т0 и давление Рo, калибровочные характеристики строят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазон Ti, Pi, где i=1, 2, а из отношения действительных значений Т, P калибровочных характеристик зависимостей сопротивления от температуры и давления находят объем V.
2. В способе по п. 1, в отличие от прототипа, действительное значение температуры T измеряют по калибровочной характеристике температуры от сопротивления R
параметрами которой служат предельная температура
и предельное сопротивление
которые находят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона температуры Ti и сопротивления Ri, где i=1, 2.
3. В способе по п. 1, в отличие от прототипа, действительное значение давления P измеряют по калибровочной характеристике от сопротивления R:
параметрами которой служат предельное давление
и предельное сопротивление
которые находят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона Pi, где i=1, 2.
4. Системе измерения давления и температуры тензомостом содержит стандартный мостовой датчик давления с тензорезисторами, соединенный через четырехпроводную линию связи с измерительно-вычислительным устройством. В отличие от прототипа, система включает инвертор в питающей диагонали тензомоста, измерительная диагональ которого соединена с информационными входами измерительно-вычислителельного устройства, управляющие выходы последнего подключены к соответствующим входам инвертора постоянного тока в двуполярные импульсы.
5. В системе по п. 4, в отличие от прототипа, инвертор постоянного тока стабилизированного напряжения в двуполярные импульсы состоит из мостовой схемы четырех тиристоров, питающая диагональ которой является выходом двуполярных импульсов инвертора, нагруженных на тензомост, а управляющие входы тиристоров служат соответствующими входами инвертора, которые соединены через четырехпроводную линию связи с измерительно-вычислительным устройством.
Сущность способа поясняют режимы калибровки сопротивления от давления, температуры (фиг. 1) и объема (фиг. 2); сопоставительные оценки погрешности градуировки прототипа (фиг. 3, 4) и калибровки (фиг. 5, 6); структурная (фиг. 7) и принципиальная (фиг. 8) схемы системы, а также таблица состояния (фиг. 9), иллюстрирующая последовательность действий инвертора в цикле при смене направления тока питания тензомоста.
На фиг. 7 показана структурная схема системы измерения давления и температуры тензомостом, содержащая стандартный мостовой датчик давления с тензорезисторами 1, 2, 3, 4. Питающая диагональ тензомоста 1, 2 и 3, 4 нагружена на импульсную диагональ тиристоров 5-8 инвертора (фиг. 8). Тензомост соединен через четырехпроводную линию связи активными сопротивлениями проводов 9-12 с измерительно-вычислительным устройством 14. Система включает инвертор 13 в питающей диагонали тензомоста 1, 2 и 3, 4, измерительная диагональ 1, 3 и 2, 4 которого соединена с информационными входами измерительно-вычислительного устройства (ИВУ) 14, управляющие выходы последнего подключены к соответствующим входам инвертора 13 постоянного тока в двуполярные импульсы.
На фиг. 8 показана принципиальная схема системы. Инвертор постоянного тока 13 стабилизированного напряжения в двуполярные импульсы состоит из мостовой схемы четырех тиристоров 5-6. Питающая диагональ 6, 7 и 5, 8 схемы является выходом двуполярных импульсов инвертора 13, нагруженных на тензомост 1-4. Управляющие входы тиристоров 5, 7 и 6, 8 служат соответствующими входами инвертора 13, которые соединены через четырехпроводную линию связи А, В с ИВУ 14.
Способ осуществляется следующим образом.
1. Измерительная цепь содержит мост с тензорезисторами 1, 2, 3, 4, имеющими равные номинальные значения сопротивлений Rk, где тензорезисторы 1, 4 получают положительное приращение сопротивления RPk, а тензорезисторы 2, 3 отрицательное приращение сопротивления RPk при увеличении измеряемого давления, а при изменении температуры все плечи тензомоста получают одинаковое приращение RTk, четырехпроводную линию связи с активными сопротивлениями проводов соответственно 9-12 (см. фиг. 7).
К питающим двуплечий тензомостовой датчик проводам 9 и 12 подают ток одной полярности и измеряют напряжения между потенциальными проводами 10 и 11 (U+), затем при подаче тока другой полярности на тензомостовой датчик также измеряют напряжение между потенциальными проводами 10 и 11 (U-). Значения давления и температуры определяют по сопротивлениям Rk тензомоста согласно k-м напряжениям Uk (k=1, 4), представленным системами уравнений
где RTk=RTk+1=RTk, k+1, RPk=RPk+1=RPk,k+1.
Известно, что
и для положительной полярности получим
тогда
Откуда находим термосопротивление RT24, а также тензосопротивление RP24
Найдем при отрицательной полярности значение напряжения U
тогда
Откуда находим термосопротивление RT13, а также тензосопротивление RP13
Принципиальную схему поясняет таблица состояний (фиг. 9).
В 1-м состоянии 10 периода ИВУ 14 по управляющему выходу А включает единичным потенциалом тиристоры 5 и 7 инвертора 13, а тиристоры 6 и 8 закрыты нулевым потенциалом. Ток положительной полярности поступает через тиристор 5 на первое плечо тензорезисторов 1-2, протекает через измерительную диагональ тензомоста, регистрируется ИВУ 14 и со второго плеча тензорезисторов 3-4 возвращается через тиристор 7 на отрицательный потенциал стабилизированного источника питания инвертора 13. Во втором состоянии 01 через тиристоры 6 и 8 инвертора 13 через тензомост 1-4 пртекает ток обратной полярности, т.к. ток течет в обратном направлении через второе плечо 3-4 к первому 1-2 тензомоста.
В способе определения давления и температуры по сопротивлению терморезистора подают ток I на диагональ питания стандартного тензомостового датчика и измерение напряжения U+ на магистральной диагонали, а при смене направления тока питания измеряют напряжение U-. В отличие от прототипа действительные значения температуры T и давления P измеряют по калибровочным характеристикам сопротивления от температуры и давления, параметрами которых служат предельные сопротивления температуры RT, давления RP и соответствующие им предельные температура Т0 и давление Рo, калибровочные характеристики строят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона Тi, Рi, где i=1, 2, а из отношения действительных значений Т, Р калибровочных характеристик сопротивления от температуры и давления находят объем V.
2. Действительное значение температуры T измеряют по калибровочной характеристике сопротивления RTk,k+1 = R (см. 1) от температуры [см. Пат. №2269102 (РФ)]
или
,
параметрами которой служат предельные сопротивление RT температуры и значение температуры Т0.
Действительно, из пределов характеристики (2) и ее инверсии следует
,
,
что соответствует закономерностям тождественности множества ненормируемых измерений сопротивления R и контроля температуры Т информативным параметрам: предельному сопротивлению RT и предельной температуре Т0 калибровочной характеристики (2):
Закономерности (2а, в) однозначно определяют параметры калибровочной характеристики (2) и служат нормируемыми мерами ее тождественности эталонной характеристике натурного эксперимента.
Предельное значение температуры Т0 определяют по двум известным образцам с нормируемыми мерами верхней и нижней границ диапазона, Ti и T2=nT1 для n>1 (см. фиг. 1). Исходя из (2), составим систему уравнений для зависимости сопротивления от температуры:
Поделим первое уравнение системы (3) на второе
и после логарифмирования получим
,
из которого находят алгоритм оптимизации предельного значения температуры Т0
I
Следовательно, алгоритм оптимизации (4) регламентирует измерение сопротивлений Ri границ (i=1, 2) диапазона нормированных температур Ti, известных образцов, нахождение диапазонов сопротивления и температуры, из отношения которых оптимизируют параметр предельной температуры калибровочной характеристики (2) к адаптивному диапазону.
Предельное значение сопротивления найдем из системы уравнений начального значения температуры, аналогично, по двум известным образцам с нормируемыми мерами верхней и нижней границ диапазона, T1 и Т2
Преобразуем систему (5) в логарифмическое уравнение
,
а после экспоненцирования в степенное уравнение
.
из которого находим алгоритм оптимизации предельного сопротивления
Следовательно, алгоритм оптимизации (6) регламентирует измерение сопротивлений Ri границ (i=1, 2) диапазона нормированных температур Ti известных образцов, нахождение диапазонов сопротивления и температуры, из отношения которых оптимизируют параметр предельного сопротивления калибровочной характеристики (2) к адаптивному диапазону.
3. Действительное значение давления P измеряют по калибровочной характеристике зависимости сопротивления RPk,k+1=R от давления. Согласно монографии [Техника творчества / Е.И. Глинкин. - Тамбов: ТГТУ, 2010, с. 150-162] зависимость сопротивления от давления находят по формуле
или
,
в которой RP и Р0 - предельное сопротивление и соответствующее ему начальное значение давления, которые являются информативными параметрами.
Действительно, из пределов характеристики (7) и ее инверсии следует
,
,
что соответствует закономерностям тождественности множества ненормируемых измерений сопротивления R и контроля давления Р информативным параметрам: предельному сопротивлению RP и предельному давлению Р0 калибровочной характеристики (7):
Закономерности (7а, в) однозначно определяют параметры калибровочной характеристики (7) и служат нормируемыми мерами ее тождественности эталонной характеристике натурного эксперимента.
Предельное давление Р0 определяем по двум известным образцам с нормируемыми мерами верхней и нижней границ диапазона, P1 и Р2, где Р2=2Р1 (см. фиг. 1). Исходя из (7), составим систему уравнений для зависимости сопротивления от давления:
Поделим первое уравнение системы (8) на второе уравнение, тогда
,
а после логарифмирования получим
,
из которого находят алгоритм оптимизации предельного значения давления Р0
Следовательно, алгоритм оптимизации (9) регламентирует измерение сопротивлений Ri границ (i=1, 2) диапазона нормированных давлений Pi известных образцов, нахождение диапазонов сопротивления и давления, из отношения которых оптимизируют параметр давления калибровочной характеристики к адаптивному диапазону.
Предельное значение сопротивления найдем из системы уравнений значений давления, аналогично, по двум известным образцам с нормируемыми мерами верхней и нижней границ диапазона, Рi и Р2:
Поделив в системе (10) одно уравнение на другое, получим логарифмическое уравнение
а после экспоненцирования - степенное уравнение
,
из которого следует алгоритм оптимизации предельного значения сопротивления:
Следовательно, алгоритм оптимизации (11) регламентирует измерение сопротивлений Ri границ (i=1, 2) диапазона нормированных давлений Рi известных образцов, нахождение диапазонов сопротивления и давления, из отношения которых оптимизируют параметр предельного сопротивления калибровочной характеристики (7) к адаптивному диапазону.
Исходя из закона Клайперона-Менделеева, известно, что
Следовательно, вычислив по калибровочным характеристикам давление Р и температуру Т, можно воспользоваться законом Шарля, частным случаем объединенного газового закона:
На фиг. 2 показана калибровочная характеристика сопротивления R от объема V по известным калибровочным характеристикам сопротивления R от давления Р (7) и температуры Т (2).
Докажем эффективность способа.
В прототипе давление и температура в скважине определяются из соотношений
,
,
где Р, Т - соответственно давление и температура в месте нахождения скважинной части прибора, I - значение питающего тока, ΔRP, ΔRT - приращение активных сопротивлений тензодатчика от измеряемых параметров давления и температуры, kPi, kTi - коэффициенты пропорциональности давления и температуры, U+, U- - измеряемые напряжения.
Коэффициенты пропорциональности подбираются вручную, исходя из рассматриваемого диапазона, что отрицательно сказывается на точности и оперативности, а также делает невозможным автоматизацию измерения.
На фиг. 3 показана градуировочная 1 и калибровочная 2 характеристики сопротивления от температуры, качественный анализ которых показывает, что зависимость прототипа аппроксимируется по поддиапазонам линиями, подобранными субъективно среднестатистическим анализом относительно предлагаемого решения с калибровочной характеристикой, тождественной физике эксперимента, и оптимальными параметрами нормированных границ адаптивного диапазона. Количественная оценка представлена методической погрешностью (см. фиг. 4) температуры прототипа, которая составляет до ±50% от значений предлагаемого способа. Аналогично доказывается эффективность по давлению, где методическая погрешность прототипа также составляет ±50% по сравнению с предлагаемым решением.
Качественный анализ фиг. 5 показывает тождественность эталонной 1 и калибровочной 2 характеристик сопротивления от давления (аналогично и по температуре), что обусловлено в предлагаемом решении калибровочной характеристикой, тождественной физике эксперимента, и оптимальными параметрами нормированных границ адаптивного диапазона. Количественная оценка представлена методической погрешностью (см. фиг. 6) давления прототипа (аналогично и по температуре), которая составляет до 0,06% от значений эксперимента. Аналогично доказывается эффективность по температуре, где методическая погрешность предлагаемого решения не превышает 0,06% по сравнению с натурным экспериментом.
Таким образом, в предлагаемом способе, в отличие от прототипа, измеряют действительные значения температуры, давления и объема за счет калибровочных характеристик от сопротивления, с предельными параметрами, которые оптимизируют априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона, что в итоге не превышает методическую погрешность автоматического измерения характеристик климата (температуры, давления и объема) 0,06% от натурного эксперимента.
название | год | авторы | номер документа |
---|---|---|---|
Способ и система регулирования температуры и давления тензомостом | 2018 |
|
RU2690090C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ | 2012 |
|
RU2504759C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ | 2007 |
|
RU2341788C1 |
Способ определения действительного значения физического параметра | 2015 |
|
RU2636181C2 |
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ В СКВАЖИНЕ ОДНИМ ДАТЧИКОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2118802C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УДАРНОГО ОБЪЕМА СЕРДЦА | 2012 |
|
RU2515534C2 |
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ ОДНИМ ДАТЧИКОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2091578C1 |
Способ определения ударного объема сердца | 2017 |
|
RU2679948C2 |
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ И КАЛИБРОВКИ НА ОСНОВЕ ТЕНЗОМОСТОВОГО ИНТЕГРАЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ | 2015 |
|
RU2585486C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ В КРОВИ | 2010 |
|
RU2444279C1 |
Изобретение относится к измерительной технике, в частности к измерению температуры и давления. Способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+. При смене направления тока питания тензомоста измеряют напряжение U-. В отличие от прототипа действительные значения температуры Т и давления P измеряют по калибровочным характеристикам от сопротивления R, параметрами которых служат предельные сопротивления температуры RT, давления RP и соответствующие им предельные температура Т0 и давление Рo, калибровочные характеристики строят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазон Тi, Pi, где i=1, 2, а из отношения действительных значений Т, P калибровочных характеристик сопротивления от температуры и давления находят объем V. В системе измерения давления и температуры тензомостом, содержащей стандартный мостовой датчик давления с тензорезисторами, соединенный через четырехпроводную линию связи с измерительно-вычислительным устройством, в отличие от прототипа включен инвертор в питающую диагоналъ тензомоста, измерительная диагональ которого соединена с информационными входами измерительно-вычислительного устройства, управляющие выходы последнего подключены к соответствующим входам инвертора постоянного тока в двуполярные импульсы. В предлагаемом способе, в отличие от прототипа, измеряют действительные значения температуры, давления и объема по калибровочным характеристикам, что в итоге не превышает методическую погрешность автоматического измерения характеристик климата (температуры, давления и объема) 0,06% от натурного эксперимента. Технический результат - автоматизация измерения давления, температуры и объема за счет использования калибровочных характеристик, снижающих до минимума методическую погрешность. 2 н. и 3 з.п. ф-лы, 9 ил.
1. Способ измерения давления и температуры тензомостом, включающий подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+, при смене направления тока питания тензомоста измеряют напряжение U-, отличающийся тем, что действительные значения температуры Т и давления Р измеряют по калибровочным характеристикам от сопротивления R, параметрами которых служат предельные сопротивления температуры RT, давления RP и соответствующие им предельные температура Т0 и давление Р0, калибровочные характеристики строят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазон Ti, Pi, где i=1, 2, а из отношения действительных значений Т, Р калибровочных характеристик зависимостей сопротивления от температуры и давления находят объем V.
2. Способ по п. 1, отличающийся тем, что действительное значение температуры Т измеряют по калибровочной характеристике температуры от сопротивления R
,
ее параметрами служат предельные температура и сопротивление
, ,
которые находят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона температуры Ti, и сопротивления Ri, где i=1, 2.
3. Способ по п. 1, отличающийся тем, что действительное значение давления Р измеряют по калибровочной характеристике давления от сопротивления R
,
параметрами которой служат предельные давление и сопротивление
, ,
которые находят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазона давления Pi, и сопротивления Ri, где i=1, 2.
4. Система измерения давления и температуры тензомостом, содержащая стандартный мостовой датчик давления с тензорезисторами, соединенный через четырехпроводную линию связи с измерительно-вычислительным устройством, отличающаяся тем, что включает инвертор в питающей диагонали тензомоста, измерительная диагональ которого соединена с информационными входами измерительно-вычислителельного устройства, управляющие выходы последнего подключены к соответствующим входам инвертора постоянного тока в двуполярные импульсы.
5. Система по п. 4, отличающаяся тем, что инвертор постоянного тока стабилизированного напряжения в двуполярные импульсы состоит из мостовой схемы четырех тиристоров, питающая диагональ которой является выходом двуполярных импульсов инвертора, нагруженных на тензомост, а управляющие входы тиристоров служат соответствующими входами инвертора, которые соединены через четырехпроводную линию связи с измерительно-вычислительным устройством.
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ В СКВАЖИНЕ ОДНИМ ДАТЧИКОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2118802C1 |
Устройство для измерения давления и температуры | 1985 |
|
SU1270586A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ В СКВАЖИНЕ | 1998 |
|
RU2149993C1 |
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ В СКВАЖИНЕ ОДНИМ ДАТЧИКОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2096609C1 |
Устройство для измерения температуры и давления | 1984 |
|
SU1204969A1 |
DE 3131431 A, 24.02.1983. |
Авторы
Даты
2018-05-17—Публикация
2017-03-14—Подача