Способ определения потерь газа при эксплуатации подземных хранилищ газа Российский патент 2018 года по МПК E21B47/10 

Описание патента на изобретение RU2655090C1

Изобретение относится к газодобывающей промышленности и может использоваться при эксплуатации подземных хранилищ газа (ПХГ).

Известен способ исследования динамических процессов газовой среды ПХГ (патент РФ №2167288, Е21В 47/00, опубл. 20.05.2001), включающий введение в пласт через разные нагнетательные скважины индикаторов в газовом носителе, отбор проб газа из добывающих скважин и определение концентраций индикаторов во времени в продукции добывающих скважин. В период максимального давления газа выбирают центральные нагнетательные скважины, расположенные в одном или нескольких эксплуатационных горизонтах, исходя из системы расположения добывающих скважин по площади, при этом используют индикаторы нескольких цветов, а закачивают индикатор одного цвета в виде газонаполненных микрогранул со степенью дисперсности 0,5-0,6 мкм, состоящих из смеси поликонденсационной смолы и органического люминесцирующего вещества в расчетном количестве. В период снижения давления до минимальной средневзвешенной по площади величины одновременно отбирают пробы газа из добывающих скважин, расположенных в одном или нескольких эксплуатационных горизонтах, и определяют изменения во времени концентрации индикаторов каждого цвета и объемной скорости газа всех добывающих скважин, находят суммарное количество индикатора каждого цвета, поступившего в каждую добывающую скважину, по заданной формуле. Строят карты и по величине долей мигрирующего газа выявляют направления внутрипластовых и межпластовых перетоков и оконтуривают газодинамически различные зоны. Недостатком известного способа является возможность только качественной оценки потерь газа и отсутствие возможности их количественной оценки.

Наиболее близким к предложенному способу (прототипом) является способ определения герметичности подземных хранилищ газа (патент РФ №2526434, Е21В 47/10, опубл. 20.08.2014). В известном способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление (Рtф) и объем отбора (или закачки) газа. С учетом измеренных параметров определяют расчетное давление в ПХГ (PtР) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F) как среднеарифметическое значение отклонений (PtP) от (Рtф), полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. Указанный способ не позволяет определить величину потерь газа при утечках из ПХГ при его эксплуатации.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка способа количественной оценки потерь газа при эксплуатации ПХГ, позволяющего определять величину потерь газа из ПХГ.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности учета газа в хранилище, надежности ПХГ и обеспечение проектных показателей при эксплуатации ПХГ.

Указанный технический результат достигается за счет того, что в предлагаемом способе определения потерь газа при эксплуатации подземных хранилищ газа (ПХГ), включающем циклическое воздействие на пласт, при котором каждый цикл включает закачку газа через эксплуатационные скважины в пласт до достижения величины пластового давления, не превышающего максимально допустимого проектного значения, с последующим отбором газа до достижения величины не ниже минимально допустимого проектного значения, в каждом цикле периодически одновременно измеряют текущее пластовое давление (Рtф) и объем отбора/закачки газа (qt). Затем, с учетом измеренных параметров, определяют расчетное давление (PtР) на момент времени t, после чего определяют функцию (F), как среднеарифметическое значение отклонений (PtP) от (Рtф), полученных при каждом i-м измерении. При этом текущее пластовое давление (Рtф) измеряют в купольной части пласта. Расчетное давление определяют путем итерации при различных значениях газонасыщенного порового объема пласта (Ω0), коэффициента потерь газа (Сп) и коэффициента активности пластовой воды (Св) для эксплуатации ПХГ с водонапорным режимом из соотношения

где Ро - начальное пластовое давление,

Zо - начальный коэффициент сверхсжимаемости газа,

Zt - коэффициент сверхсжимаемости газа на момент времени t,

qt - объем закачки (или отбора) газа на момент времени t,

Сп - коэффициент потерь газа,

Qв - объем подвижной пластовой воды, причем

где Св - коэффициент активности пластовой воды,

Pt - текущее давление в залежи,

Рст - начальное гидростатическое давление,

или при различных значениях (Ω0) и (Сп) для эксплуатации ПХГ с газовым режимом из соотношения

при этом итерацию с изменением параметров (Ω0), (Сп), (Св) выполняют до достижения минимального значения функции (F)

где n - количество замеров пластового давления,

i - порядковый номер замера пластового давления, после чего, с учетом полученного в результате итерации коэффициента потерь газа (Сп), определяют потери газа в ПХГ на момент времени t

При эксплуатации ПХГ без количественного учета пластовых потерь газа нарушается учет объема газа в пласте, что может привести к серьезным осложнениям при создании и выходе хранилища на циклический режим эксплуатации.

Для ПХГ изменение объема газа в пласте во времени определяется уравнением

где Vt - объем газа в пласте в момент времени t,

Переходя к интегральному виду, получаем

где Vo - объем газа в начальный момент времени.

Из уравнения материального баланса (Закиров С.Н. «Проектирование и разработка газовых месторождений». М.: Недра, 1974 г., с. 28-35) известно

где Ωt - газонасыщенный поровый объем пласта в момент времени t,

Pt - пластовое давление газа в момент времени t,

Zt - коэффициент сверхсжимаемости газа в момент времени t.

Коэффициент сверхсжимаемости (Z) зависит от состава газа, температуры, давления и является справочным показателем (Требин Ф.А. «Добыча природного газа». М.: Недра, 1976 г., с. 78-85). Значения Z можно аппроксимировать полиномом вида

где а, b, с - коэффициенты полинома.

При водонапорном режиме эксплуатации ПХГ изменение величины Q, за время t происходит за счет движения пластовой воды при закачке/отборе газа в ПХГ, тогда уравнение (8) для ПХГ с водонапорным режимом примет вид

Эксплуатацию ПХГ с водонапорным режимом описывают через измеряемые параметры отбора (закачки) газа и пластового давления системой уравнений

При газовом режиме эксплуатации ПХГ изменения порового объема Ωt за время t не происходит, т.к. Ωt - постоянная величина и уравнение (8) для ПХГ с газовым режимом примет вид

Эксплуатацию ПХГ с газовым режимом описывают через измеряемые параметры отбора (закачки) газа и пластового давления системой уравнений

При наличии потерь газа при эксплуатации ПХГ уравнение (6) примет вид

- объем потерь газа при эксплуатации ПХГ в момент времени t.

Объем потерь газа при эксплуатации ПХГ можно описать уравнением вида (Закиров С.Н. «Проектирование и разработка газовых месторождений». М.: Недра, 1974 г., с. 220-226)

где Сп - коэффициент потерь газа при эксплуатации ПХГ.

При эксплуатации ПХГ с водонапорным режимом с потерями газа уравнение (11) примет вид

Уравнение (17) с учетом движения пластовой воды при закачке (отборе) газа в ПХГ примет вид

При эксплуатации ПХГ с газовым режимом с потерями газа уравнение (13) примет вид

Значение расчетного давления в ПХГ определяют путем решения формул (18) и (19) относительно (PtP).

Для оценки отклонения расчетного пластового давления (PtP) от фактического (РtФ) используют функцию (F), определяемую как среднеарифметическое значение абсолютных отклонений (РtP) от фактического (РtФ), полученных при каждом i-м измерении

При эксплуатации ПХГ с водонапорным режимом функцию (F) определяют путем решения уравнения (18) относительно пластового давления (РtP) при различных значениях параметров (Ω0, Cп, Св).

При эксплуатации ПХГ с газовым режимом функцию (F) определяют путем решения уравнения (19) относительно пластового давления (РtP) при различных значениях параметров (Ω0, Cп).

Способ осуществляют следующим образом.

В процессе эксплуатации ПХГ осуществляют циклическое воздействие на продуктивный пласт. В каждом цикле через эксплуатационные скважины проводят закачку газа в продуктивный пласт с последующим отбором газа. Закачку газа проводят до достижения пластового давления в ПХГ, не превышающего максимально допустимого проектного значения. Отбор газа проводят до достижения пластового давления не ниже минимально допустимого проектного значения. В течение каждого цикла замеряют текущее пластовое давление (РtФ) в хранилище и объем отбора (закачки) газа (qt). Текущее пластовое давление (РtФ) измеряют в купольной части пласта, что позволяет получить наиболее достоверные значения измеряемых параметров и обеспечивает повышение точности учета газа. Затем определяют расчетное давление (РtP) по формуле (18) для ПХГ с водонапорным режимом и по формуле (19) для ПХГ с газовым режимом. После чего определяют значения функции (F) по формуле (20) путем итерации при различных значениях параметров (Ω0, Cп, Св) для ПХГ с водонапорным режимом и при различных значениях (Ω0, Cп) для ПХГ с газовым режимом. Итерацию выполняют до момента, когда значение функции (F) перестает изменяться и определяют минимальное значение функции (Fmin). По найденному в результате итерации значению коэффициента потерь газа (Сп) определяют по формуле (16) объем потерь газа, количественное значение которого позволяет оценить риски при эксплуатации ПХГ и обеспечить проектные показатели и надежность ПХГ. Пример 1.

С помощью предлагаемого способа исследовали Калужское ПХГ с водонапорным режимом эксплуатации. Полученные в процессе исследования фактические значения пластового давления (PtФ) и объема закачки (отбора) газа (qt), а также расчетные значения пластовых давлений (PtР) и потерь газа в различные моменты времени приведены в таблице 1.

По результатам сравнения фактических и расчетных параметров и найденному в результате итерации значению коэффициента (Сп) были определены потери газа в различные моменты времени в указанном ПХГ при Fmin=2,823 и Сп=0,00001.

Пример 2.

С помощью предлагаемого способа исследовали Осиповичское ПХГ с газовым режимом эксплуатации. Полученные в процессе исследования фактические значения пластового давления (Рtф) и объема закачки (отбора) газа (qt), а также расчетные значения пластовых давлений (PtP) и потерь газа в различные моменты времени приведены в таблице 2.

По результатам сравнения фактических и расчетных параметров и найденному в результате итерации значению коэффициента (СП) были определены потери газа в различные моменты времени в указанном ПХГ при Fmin=1,92 и СП=0,037.

Таким образом, определение реальных количественных потерь газа с использованием наиболее достоверных, измеренных в купольной части пласта, значений текущего пластового давления в различные моменты времени позволяет повысить точность учета газа в хранилище, надежность ПХГ и обеспечить проектные показатели при эксплуатации ПХГ.

Похожие патенты RU2655090C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА С ВОДОНАПОРНЫМ РЕЖИМОМ ЭКСПЛУАТАЦИИ 2013
  • Солдаткин Сергей Григорьевич
  • Рогов Евгений Анатольевич
  • Бебешко Инна Григорьевна
RU2540716C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА 2013
  • Солдаткин Сергей Григорьевич
  • Рогов Евгений Анатольевич
  • Бебешко Инна Григорьевна
RU2526434C1
Способ эксплуатации подземного хранилища природного газа 2015
  • Хан Сергей Александрович
  • Дорохин Владимир Геннадьевич
  • Скрябина Анастасия Сергеевна
  • Бондаренко Наталья Павловна
RU2615198C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАЧАЛЬНЫХ И ТЕКУЩИХ ЗАПАСОВ ГАЗА ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 1999
  • Ставкин Г.П.
  • Гацолаев А.С.
  • Маслов В.Н.
RU2148153C1
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ГЕОЛОГИЧЕСКИХ СТРУКТУРАХ, ЗАПОЛНЕННЫХ ГАЗОМ 2011
  • Дмитриевский Анатолий Николаевич
RU2458838C1
СПОСОБ СОЗДАНИЯ И ЭКСПЛУАТАЦИИ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА В ИСТОЩЕННЫХ НЕФТЯНЫХ И НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ 2008
  • Каримов Марат Фазылович
  • Лобанов Андрей Николаевич
  • Муллагалиева Ляля Махмутовна
  • Ибрагимов Рустем Рафикович
  • Исламов Ринат Асхатович
  • Хан Сергей Александрович
  • Арутюнов Артем Ервандович
  • Василевский Владимир Леонидович
  • Латыпов Айрат Гиздеевич
  • Аглиуллин Марс Хасанович
  • Тернюк Игорь Михайлович
RU2377172C1
Способ создания подземного хранилища газа в водоносной геологической структуре 2017
  • Каримов Марат Фазылович
  • Хан Сергей Александрович
  • Дудникова Юлия Константиновна
  • Алабердин Ренат Рифатович
  • Костиков Сергей Леонидович
  • Мелков Александр Сергеевич
  • Муллагалиева Ляля Махмутовна
RU2697798C2
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ВОДОНОСНОЙ ГЕОЛОГИЧЕСКОЙ СТРУКТУРЕ 2015
  • Каримов Марат Фазылович
  • Латыпов Айрат Гиздеевич
  • Муллагалиева Ляля Махмутовна
  • Аглиуллин Марс Хасанович
  • Исламова Асия Асхатовна
  • Хан Сергей Александрович
  • Костиков Сергей Леонидович
  • Тернюк Игорь Михайлович
  • Дудникова Юлия Константиновна
RU2588500C1
Способ создания и эксплуатации подземного хранилища газа в водоносной геологической структуре 2021
  • Каримов Марат Фазылович
  • Хан Сергей Александрович
  • Костиков Сергей Леонидович
  • Сафонов Игорь Александрович
  • Никитин Роман Сергеевич
  • Муллагалиева Ляля Махмутовна
  • Кошелев Дмитрий Александрович
  • Позднухов Сергей Владимирович
  • Богомазова Александра Геннадьевна
  • Панкратов Андрей Валерьевич
RU2770028C1
СПОСОБ КОНТРОЛЯ РАЗРАБОТКИ ГАЗОВОГО МЕСТОРОЖДЕНИЯ 2006
  • Андреев Олег Петрович
  • Зинченко Игорь Александрович
  • Моисеев Юрий Федорович
  • Кривицкий Григорий Евсеевич
  • Безматерных Евгений Федорович
RU2307927C1

Иллюстрации к изобретению RU 2 655 090 C1

Реферат патента 2018 года Способ определения потерь газа при эксплуатации подземных хранилищ газа

Изобретение относится к газодобывающей промышленности и может использоваться при эксплуатации подземных хранилищ газа (ПХГ). Техническим результатом является повышение точности учета газа в хранилище, надежности ПХГ и обеспечение проектных показателей при эксплуатации ПХГ. Способ включает циклическое воздействие на пласт, при котором каждый цикл включает закачку газа через эксплуатационные скважины в пласт с последующим отбором газа. В каждом цикле периодически одновременно измеряют текущее пластовое давление (Ptф) и объем отбора/закачки газа (qt), затем с учетом измеренных параметров определяют расчетное давление (PtР) на момент времени t, после чего определяют функцию (F), как среднеарифметическое значение отклонений (PtР) от (Ptф), полученных при каждом i-м измерении. При этом текущее пластовое давление (Ptф) измеряют в купольной части пласта, расчетное давление определяют путем итерации при различных значениях газонасыщенного порового объема пласта (Ω0), коэффициента потерь газа (Сп) и коэффициента активности пластовой воды (Св) для эксплуатации ПХГ с водонапорным режимом или при различных значениях (Ω0) и (Сп) для эксплуатации ПХГ с газовым режимом. Итерацию выполняют до достижения минимального значения функции (F), после чего, с учетом полученного в результате итерации коэффициента потерь газа (Сп), определяют потери газа в ПХГ на момент времени t. 2 табл.

Формула изобретения RU 2 655 090 C1

Способ определения потерь газа при эксплуатации подземных хранилищ газа (ПХГ), включающий циклическое воздействие на пласт, при котором каждый цикл включает закачку газа через эксплуатационные скважины в пласт до достижения величины пластового давления, не превышающего максимально допустимого проектного значения, с последующим отбором газа до достижения величины не ниже минимально допустимого проектного значения, при этом в каждом цикле периодически одновременно измеряют текущее пластовое давление (Рtф) и объем отбора/закачки газа (qt), затем с учетом измеренных параметров определяют расчетное давление (PtP) на момент времени t, после чего определяют функцию (F), как среднеарифметическое значение отклонений (PtР) от (Рtф), полученных при каждом i-м измерении, отличающийся тем, что текущее пластовое давление (Рtф) измеряют в купольной части пласта, расчетное давление определяют путем итерации при различных значениях газонасыщенного порового объема пласта (Ω0), коэффициента потерь газа (Сп) и коэффициента активности пластовой воды (Св) для эксплуатации ПХГ с водонапорным режимом из соотношения

где Ро - начальное пластовое давление,

Zо - начальный коэффициент сверхсжимаемости газа,

Zt - коэффициент сверхсжимаемости газа на момент времени t,

qt - объем закачки (или отбора) газа на момент времени t,

Сп - коэффициент потерь газа,

Qв - объем подвижной пластовой воды, причем

где Св - коэффициент активности пластовой воды,

Pt - текущее давление в залежи,

Рст - начальное гидростатическое давление,

или при различных значениях (Q0) и (Сп) для эксплуатации ПХГ с газовым режимом из соотношения

при этом итерацию с изменением параметров (Ω0), (Сп), (Св) выполняют до достижения минимального значения функции (F)

где n - количество замеров пластового давления,

i - порядковый номер замера пластового давления, после чего, с учетом полученного в результате итерации коэффициента потерь газа (Сп), определяют потери газа в ПХГ на момент времени t

Документы, цитированные в отчете о поиске Патент 2018 года RU2655090C1

СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА 2013
  • Солдаткин Сергей Григорьевич
  • Рогов Евгений Анатольевич
  • Бебешко Инна Григорьевна
RU2526434C1
Способ испытания подземных резервуаров на герметичность 1986
  • Поздняков Анатолий Григорьевич
  • Сидоров Иван Николаевич
  • Вологин Валерий Владимирович
SU1440821A1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА С ВОДОНАПОРНЫМ РЕЖИМОМ ЭКСПЛУАТАЦИИ 2013
  • Солдаткин Сергей Григорьевич
  • Рогов Евгений Анатольевич
  • Бебешко Инна Григорьевна
RU2540716C1
СПОСОБ ИССЛЕДОВАНИЯ ДИНАМИЧЕСКИХ ПРОЦЕССОВ ГАЗОВОЙ СРЕДЫ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА 1999
  • Тагиров К.М.
  • Арутюнов А.Е.
  • Гасумов Р.А.-О.
  • Варягов С.А.
  • Шамшин В.И.
  • Бекетов С.Б.
RU2167288C2
СПОСОБ МОНИТОРИНГА ЗА ПОДЗЕМНЫМ РАЗМЕЩЕНИЕМ ЖИДКИХ ПРОМЫШЛЕННЫХ ОТХОДОВ В ГЛУБОКИХ ВОДОНОСНЫХ ГОРИЗОНТАХ 2003
  • Гасумов Рамиз Алиджавад Оглы
  • Акулинчев Б.П.
  • Яровая С.К.
RU2244823C1
US 20120039668 A1, 16.02.2012.

RU 2 655 090 C1

Авторы

Рогов Евгений Анатольевич

Солдаткин Сергей Григорьевич

Даты

2018-05-23Публикация

2017-05-22Подача