Способ создания изгибов волноводов Российский патент 2018 года по МПК G02B6/10 

Описание патента на изобретение RU2655992C1

Изобретение относится к способам создания интегрально-оптических схем, которые используют для получения, обработки и передачи информации. Более конкретно в изобретении предложен способ создания изгибов интегрально-оптических волноводов, с помощью которого возможно реализовать большие углы поворота волноводов в малой области, а также осуществить интерфейс между интегральной схемой и внешними устройствами.

Изгибы волноводов являются неотъемлемой частью интегрально-оптических чипов. Важной характеристикой изгибов является их размер, определяемый радиусом изгиба. Создание изгибов с малым радиусом требует волноводов с большим контрастом показателя преломления между сердцевиной волновода и его окружением. Из существующего уровня техники известны волноводные изгибы в форме дуг окружностей и спиралей (Y.A. Vlasov, S.J. McNab, Optics Express, v. 12, No 8, p. 1622-1631 (2004)). Существует несколько основных технологий, с помощью которых создаются интегрально-оптические чипы. Известны конкретные реализации таких изгибов в интегральных схемах на основе кремния, нитрида кремния и других материалов, в которых контраст показателя преломления между сердцевиной волновода и его окружением может достигать нескольких единиц.

Предлагаемый способ ориентирован на его использование в технологиях на основе модификации показателя преломления в объеме диэлектрика, например с помощью лазерного излучения. Особенностью такой технологии является типично малый контраст преломления со значениями много меньшими единицы. По этой причине для создания изгибов с малыми потерями на базе такой технологии необходимы очень большие радиусы кривизны, что делает их изготовление непрактичным.

С целью уменьшения оптических потерь на изгибах известны способы создания волноводов с замещенным материалом внешней стенки изгиба волновода (патент JP, Н01-223403 от 06.09.1989). Недостатком такого подхода является необходимость замещения материала с изогнутым профилем, что практически можно выполнить только с использованием технологии литографии или схожих технологий. Известны способы для перенаправления излучения с помощью миниатюрных зеркал, изготовленных внутри объема оптических чипов (Е. Kleijn, М.K. Smit, X.J.M. Leitens, Journal of light wave technology, v. 31, No. 18, p. 3055-3063 (2013)). Недостатком данного технического решения является ограничение его применения в многослойной литографии, что делает невозможным его использование в создании интегральных оптических схем на основе модификации показателя преломления в объеме прозрачного твердого тела.

Наиболее близким к заявленному техническому решению является способ создания изгибов волноводов с низкими потерями, изложенный в патентах WO 2006088613 (А2) от 2006.08.24, CN 101120274 (В) от 2010.08.25, US 2006182399 (A1) от 2006.08.17, US 7760979 (В2) от 2010.07.20, WO 2006088613 (A3) от 2006.11.23, GB 2438119 (A) от 2007.11.14, GB 2438119 (B) от 2010.05.05. В этом решении предложено прерывать стык изгиба элементом, на котором выполнены условия полного внутреннего отражения. Недостатками данного технического решения являются: 1) необходимость использования многослойных технологий, состоящих в напылении слоев с различными профилями из разных материалов на всей области чипа или в физическом удалении областей чипа и их замену на другие; 2) невозможность выполнения условий полного внутреннего отражения для углов изгибов близких к 180 градусам.

Технической задачей, на решение которой направлено настоящее изобретение, является создание компактных волноводных изгибов, создаваемых технологиями модификации показателя преломления в объеме твердого прозрачного тела, с целью создания интегрально-оптических элементов и устройств на их основе.

Поставленная задача решается за счет того, что заявленный способ формирования изгиба волновода в интегральной оптической схеме, заключающийся в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности, отличается тем, что участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки. Может быть способ, отличающийся тем, что после формирования участков волновода и до размещения отражающей поверхности указанную плоскую грань заготовки шлифуют и/или полируют. Может быть способ, отличающийся тем, что в качестве отражающей поверхности используют металлическую пленку или слоистую диэлектрическую структуру, которую наносят непосредственно на указанную плоскую грань или прикладывают к ней. Может быть способ, отличающийся тем, что используют отражающую поверхность, реализующую полное зеркальное отражение для длин волн заданного диапазона. Может быть способ, отличающийся тем, что используют отражающую поверхность, частично прозрачную для длин волн заданного диапазона.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является уменьшение потерь оптических сигналов, проходящих через изгибы волноводов, которые созданы методом печати в объеме твердого прозрачного тела.

Краткое описание чертежей

На фиг. 1 представлен чертеж волноводного изгиба в форме дуги окружности некоторого радиуса R для перенаправления сигнала на угол π-2α с α«1. Изгиб сформирован волноводом 1 и имеет два порта - 2 и 3, через которые на него поступает и выходит оптический сигнал. Изгиб - симметричный элемент, поэтому выбор входного и выходного порта определяется схемой оптического чипа. Характерная площадь, на которой расположен такой изгиб, равна 2R2. В случае слабо направляющих волноводов это, как правило, большая величина, которая может превышать размеры компактного интегрально оптического чипа.

На фиг. 2 представлен чертеж волноводного изгиба, который иллюстрирует предложенный способ изготовления изгибов с помощью переотражения от грани оптического чипа. Изгиб сформирован прямолинейными отрезками волноводов 4 с пересекающимися осями, которые задают пару портов - 5 и 6, служащих для подачи и съема оптического сигнала из изгиба. Для перенаправления излучения на грани чипа размещена отражательная поверхность 7. Из геометрических соображений очевидно, что для перенаправления на угол π-2α площадь размещения изгиба много меньше, чем в случае на фиг. 1.

Фиг. 3, 4, 5 и 6 иллюстрируют предлагаемый способ создания изгиба с малыми потерями.

На фиг. 3 изображена заготовка 8 с плоскими гранями, которая представляет собой твердое тело, оптически прозрачное для диапазона длин волн, в котором будет работать оптический чип. Для пояснения рассмотрена некоторая грань 9 заготовки. Печать волноводного изгиба в заготовке осуществляется таким образом, чтобы точка пересечения осей волноводов лежала в объеме заготовки.

На фиг. 4 изображено сечение заготовки после этапа печати волноводов. Сечение лежит в плоскости напечатанных волноводов 10 с пересекающимися осями 11 в некоторой точке 12, лежащей внутри заготовки. Сами волноводы физически могут как пересекать друг друга в этой точке, так и не доходить до точки пересечения их осей из-за прерывания (этому случаю соответствуют иллюстрации).

На фиг. 5 изображено сечение заготовки оптического чипа в плоскости напечатанных волноводов 10 после этапа шлифовки/полировки грани 9. В результате точка пересечения осей волноводов 12 лежит на полученной путем шлифовки/полировки грани 13 или в некоторой ее окрестности, определяющей оптимальность перенаправления. Нормаль 14 к поверхности грани 13 в точке, наиболее близкой к пересечению осей волноводов 12, лежит в плоскости волноводов и образует с осями волноводов одинаковые углы.

На фиг. 6 изображено сечение заготовки чипа после этапа напыления или приложения отражающей поверхности 15 к грани 13. Данный этап является завершающим для создания изгиба предложенным способом.

Осуществление изобретения

Интегрально-оптические устройства активно используются в коммуникационных оптических системах и системах обработки информации по причине своей компактности, высокой функциональности, стабильности и энергоэффективности. Интегральные оптические технологии обладают большим потенциалом для реализации сложных квантовых алгоритмов обработки и передачи информации. В основу интегральных устройств положены волноводы, располагаемые на чипе, по которым распространяются оптические сигналы. Волноводы представляют собой сердцевину, характеризуемую показателем преломления выше, чем окружающая среда. На сегодняшний день существует ряд технологий создания волноводов для интегрально-оптических устройств, каждую из которых отличает материал и подход к созданию неоднородностей показателя преломления. Например, хорошо развита на сегодня технология литографии, позволяющая создавать планарные чипы, например, на основе кремния и кварца, нитрида кремния и кварца и других.

Важной характеристикой волноводных структур является контраст показателя преломления между сердцевиной волновода и окружающей средой. При высоких значениях этой величины можно создавать изгибы волноводов с малыми потерями и, следовательно, более плотно «упаковать» функциональные элементы на интегральном чипе. Например, контраст показателей преломления в структурах на основе кремния достигает нескольких единиц, что позволяет делать волноводные изгибы с радиусами в несколько микрометров с малыми потерями.

Технологии печати волноводов в объеме прозрачного твердого тела, например сфокусированным лазерным излучением, дают возможность создавать трехмерные оптические чипы без сложных многоступенчатых технологий литографии. Однако на сегодняшний день технологии печати волноводов не дают таких высоких контрастов показателя преломления, как в случае литографических технологий удаления и послойного нанесения различных материалов. Типичные значения контрастов в волноводах, выполненных методами лазерной печати, составляют порядка 10-3-10-4, в зависимости от обрабатываемого материала и условий печати; имеются особые виды халькогенидов, в которых удалось получить контраст ~0,5. Существенным преимуществом волноводов с малым контрастом показателя преломления (называемых также слабо направляющими волноводами) является малый уровень потерь на участках без изгибов, который может быть существенно меньше потерь в волноводах, изготовленных литографическими технологиями. С другой стороны, свойство малости контраста показателя преломления делает невозможным создание изгибов с малыми радиусами кривизны из-за больших потерь в них, поэтому в них не существует прямого способа плотной «упаковки» функциональных элементов без привлечения дополнительных элементов. Вместе с тем технологии создания волноводов в объеме диэлектрика с помощью модификации показателя преломления материала чипа не позволяют внедрять инородные элементы в волноводные структуры или это является сложной задачей.

В настоящем изобретении предложено подводить волноводы к торцам чипа и наносить на них отражающее покрытие и с их помощью перенаправлять излучение из одного волновода в другой с малыми потерями. При оптимальной конфигурации такой волноводной структуры - взаимной ориентации волноводов и их ориентации относительно отражающего торца чипа - (I) возможно добиться перенаправления излучения на углы, которые не ограничены условиями полного внутреннего отражения. Помимо этого, (II) с помощью предложенного подхода можно реализовать интерфейс между интегральной схемой и внешними элементами (источники, детекторы, преобразователи и др.). Для этой цели торцы должны быть частично отражающими.

Предложенный способ создания изгибов состоит из трех этапов:

1. На начальном этапе необходима твердотельная заготовка с плоскими гранями, которая прозрачна для диапазона длин волн, в котором будет работать интегральная схема. Кроме того, при создании активных волноводных устройств, например усилителей, лазеров или преобразователей, на оптическом чипе, материал заготовки также должен обладать соответствующими активными свойствами. На фиг. 3 представлена заготовка 8 с плоской гранью 9. На первом этапе формируют волноводную структуру будущего чипа. При этом изгибы волноводов представляют собой отрезки прямолинейных волноводов, у которых оси пересекаются в некоторых точках внутри объема заготовки. Рассмотрим предложенный способ на примере одного изгиба. На фиг. 4 представлена заготовка чипа с напечатанными волноводами 10. Заметим, что физически прямолинейные волноводы необязательно пересекаются, однако оси волноводов 11, которые могут являться их продолжениями, должны пересекаться в некоторой точке внутри заготовки 12. На данном этапе грань 9 может иметь произвольную ориентацию относительно волноводов 10.

2. На втором этапе, изображенном на фиг. 5, для подвода плоскости грани к точке пересечения осей волноводов и формирования требуемой ориентации этой грани выполняют шлифовку и/или полировку изначальной грани 9. Точка пересечения 12, таким образом, лежит на новой грани 13 или в ее малой окрестности. Кроме того, нормаль 14 к грани 13 лежит в плоскости осей волноводов 11, а углы, которые она образует с осями 11, равны между собой.

Выполнение двух условий является необходимым для малых потерь на изгибе:

- положение точки пересечения 12 на малом расстоянии от плоскости 13 (это следствие согласования пространственных профилей мод между входным и выходным волноводами);

- соотношение углов между нормалью 14 и осями 11 следует из условия оптимального отражения от грани 13.

Следует отметить, что описанные условия для взаимной ориентации граней и волноводов могут быть выполнены уже на первом этапе при записи волноводов. В этом случае необходимость во втором этапе отпадает.

3. На третьем этапе, который иллюстрирует фиг. 6, на грань 13 наносят отражающее покрытие 15. Это может быть выполнено с помощью напыления металлической пленки или слоистой диэлектрической структуры. В зависимости от требуемого функционала изгиба, в предложенном способе имеется возможность реализовать интерфейс между чипом и внешним окружением. Для этой цели отражающая поверхность выполняется частично пропускающей. Более того, отражающую поверхность можно реализовать с помощью приставления отражающей поверхности к грани. В таком случае конфигурацию пропускания и связи с внешним окружением в изгибе можно изменять.

Похожие патенты RU2655992C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНОЙ ОПТИЧЕСКОЙ ВОЛНОВОДНОЙ СТРУКТУРЫ 2015
  • Калинкин Александр Александрович
  • Бессонов Владимир Олегович
  • Соболева Ирина Владимировна
  • Евдокимов Максим Геннадьевич
  • Мусорин Александр Игоревич
  • Афиногенов Борис Игоревич
  • Любин Евгений Валерьевич
  • Вабищевич Полина Петровна
  • Дьяконов Иван Викторович
RU2617455C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕЛИТЕЛЯ В ИНТЕГРАЛЬНОЙ ОПТИЧЕСКОЙ СХЕМЕ 2017
  • Сайгин Михаил Юрьевич
  • Дьяконов Иван Викторович
  • Страупе Станислав Сергеевич
  • Калинкин Александр Александрович
  • Кулик Сергей Павлович
RU2675400C1
ИНТЕГРАЛЬНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ГАЗОВОЗДУШНЫХ СРЕДАХ 2020
  • Охлопков Кирилл Игоревич
  • Шафирин Павел Андреевич
  • Шорохов Александр Сергеевич
  • Федянин Андрей Анатольевич
RU2751449C1
СПОСОБ КОММУТАЦИИ N×N ОПТИЧЕСКИХ КАНАЛОВ И МНОГОКАНАЛЬНЫЙ КОММУТАТОР 2012
  • Компанец Игорь Николаевич
  • Компанец Сергей Игоревич
  • Неевина Татьяна Александровна
RU2504812C2
СПОСОБ КОММУТАЦИИ N×N ОПТИЧЕСКИХ КАНАЛОВ И МНОГОКАНАЛЬНЫЙ КОММУТАТОР 2010
  • Компанец Игорь Николаевич
  • Компанец Сергей Игоревич
  • Неевина Татьяна Александровна
RU2456652C2
УСТРОЙСТВО ДОПОЛНЕННОЙ РЕАЛЬНОСТИ НА ОСНОВЕ ГОЛОГРАФИЧЕСКОГО ОПТИЧЕСКОГО ВОЛНОВОДА 2020
  • Чежегов Александр Андреевич
  • Пустынникова Вера Михайловна
  • Попкова Анна Андреевна
  • Егоренков Михаил Викторович
  • Балашов Игорь Сергеевич
  • Шарипова Маргарита Ильгизовна
  • Грунин Андрей Анатольевич
RU2740065C1
Защитное устройство на основе дифракционных структур нулевого порядка 2022
  • Абрамович Георгий Леонидович
  • Акименко Андрей Петрович
  • Раздобарин Александр Викторович
  • Смирнов Леонид Игоревич
RU2801793C1
СПОСОБ ПОДСТРОЙКИ ИНТЕГРАЛЬНО-ОПТИЧЕСКОГО ИНТЕРФЕРОМЕТРА МАХА-ЦЕНДЕРА 2020
  • Тронев Александр Викторович
  • Парфенов Михаил Владимирович
  • Ильичев Игорь Владимирович
  • Агрузов Петр Михайлович
  • Шамрай Александр Валерьевич
RU2754205C1
ИНТЕГРАЛЬНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ГАЗО-ВОЗДУШНЫХ СРЕДАХ 2021
  • Кройчук Мария Кирилловна
  • Новоселов Александр Фёдорович
  • Шорохов Александр Сергеевич
  • Федянин Андрей Анатольевич
RU2773389C1
СЕНСОРНОЕ УСТРОЙСТВО НА ОСНОВЕ ПЛАНАРНЫХ И ЦИЛИНДРИЧЕСКИХ ПОЛЫХ СВЕТОВОДОВ С ИНТЕГРИРОВАННОЙ ИНТЕРФЕРОМЕТРИЧЕСКОЙ СИСТЕМОЙ 2010
  • Желтиков Алексей Михайлович
  • Федотов Андрей Борисович
RU2432568C1

Иллюстрации к изобретению RU 2 655 992 C1

Реферат патента 2018 года Способ создания изгибов волноводов

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной оптической схеме заключается в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности. При этом участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки. Технический результат – уменьшение потерь оптических сигналов, проходящих через изгибы волноводов, которые созданы методом печати в объеме твердого прозрачного стекла. 4 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 655 992 C1

1. Способ формирования изгиба волновода в интегральной оптической схеме, заключающийся в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности, отличающийся тем, что участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки.

2. Способ по п. 1, отличающийся тем, что после формирования участков волновода и до размещения отражающей поверхности указанную плоскую грань заготовки шлифуют и/или полируют.

3. Способ по п. 1, отличающийся тем, что в качестве отражающей поверхности используют металлическую пленку или слоистую диэлектрическую структуру, которую наносят непосредственно на указанную плоскую грань или прикладывают к ней.

4. Способ по п. 1, отличающийся тем, что используют отражающую поверхность, реализующую полное зеркальное отражение для длин волн заданного диапазона.

5. Способ по п. 1, отличающийся тем, что используют отражающую поверхность, частично прозрачную для длин волн заданного диапазона.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655992C1

0
SU164349A1
ОПТИЧЕСКОЕ ВОЛОКНО С НИЗКИМИ ИЗГИБНЫМИ ПОТЕРЯМИ 2011
  • Букбайндер Дана К.
  • Ли Мин-Цзюнь
  • Тандон Пушкар
RU2567468C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛНОВОДОВ ИНТЕГРАЛЬНО-ОПТИЧЕСКОЙ СХЕМЫ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА 2000
  • Курбатов А.М.
RU2176803C2
US 6259841 B1, 10.07.2001.

RU 2 655 992 C1

Авторы

Калинкин Александр Александрович

Бессонов Владимир Олегович

Дьяконов Иван Викторович

Соболева Ирина Владимировна

Сайгин Михаил Юрьевич

Мусорин Александр Игоревич

Любин Евгений Валерьевич

Афиногенов Борис Игоревич

Чуприянов Никита Сергеевич

Абрашитова Ксения Александровна

Даты

2018-05-30Публикация

2017-05-17Подача