Узел комплексной очистки природного газа Российский патент 2018 года по МПК F17D1/04 

Описание патента на изобретение RU2656771C1

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей: капель конденсата, кристаллогидратов углеводородов и механических частиц, в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП).

Известна установка для комплексной очистки газов, включающая напорный (входной) газопровод, конденсатосборник, выполненный диаметром, значительно большим, чем диаметр основного газопровода, и снабженный патрубками входа газа и отвода жидкости, внутри которого помещены суживающее устройство, выполненное в виде дроссельной шайбы, сепарационная решетка и патрубок отвода конденсата, а напорный газопровод снабжен байпасом и запорной арматурой [Патент РФ №2363881, МПК F 17 D 1/02, 2009].

Основными недостатками известной установки комплексной очистки газа являются ее габариты и незначительная низкая скорость выделения из газовой смеси вредных примесей, что снижает надежность защиты газопровода от закупорки кристаллогидратными пробками.

Более близким к предлагаемому изобретению является расширенный узел очистки ГРС, снабженной дополнительным технологическим блоком, содержащим последовательно расположенные узлы переключения (запорную арматуру), расширительную камеру с завихрителем, конденсатосборник и собственно узел очистки (фильтр), при этом исключение гидратообразования в газопроводе обеспечивается подогревом газа перед редуцированием и подогревом внутреннего пространства технологического блока [Патент РФ №2079040, МПК F 17 D 1/04, 1997].

Основным недостатком известного устройства является наличие в его конструкции расширительного бака с завихрителем, выполненным в форме направляющих лопаток, который занимает значительный объем помещения ГРС, не обеспечивая в то же время требуемую степень очистки, отсутствие подогрева самого конденсатосборника, приводящее к повышению концентрации остаточных газов (метана и др.) в конденсате, что снижает экономическую и экологическую эффективность очистки газа.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение экономической и экологической эффективности узла комплексной очистки природного газа.

Технический результат достигается тем, что предлагаемый узел комплексной очистки природного газа содержит входной газопровод с отсекающим запорным устройством (арматурой), соединенные с ним через отводные газопроводы и запорную арматуру, циклон (вариант – батарея циклонов), фильтр, конденсатосборник–отстойник, выполненный в виде вертикального прямоугольного корпуса с пирамидальным днищем, средняя зона корпуса которого снабжена продольными щелевыми воздушными каналами, образуя зону нагрева, коническое днище циклона соединено через трубопровод, снабженный запорной арматурой, гидрозатвором и дросселем, с боковой стенкой корпуса конденсатосборника–отстойника ниже зоны нагрева, крышка конденсатосборника–отстойника соединена через выхлопной газопровод, снабженный обратным клапаном и запорной арматурой, с выходным газопроводом, а его пирамидальное днище соединено через трубопровод и запорную арматуру с емкостью сбора конденсата, расположенной за пределами помещения ГРС.

Предлагаемый узел комплексной очистки природного газа (УКОПГ) изображен на фиг.1, 2 (на фиг.1 – принципиальная схема УКОПГ, на фиг. 2 – разрез конденсатосборника).

УКОПГ содержит входной газопровод 1 с отсекающей запорной арматурой 2, соединенные с ним через отводные газопроводы 3, 4 и запорную арматуру 5, циклон 6 (вариант – батарея циклонов 6), фильтр 7, конденсатосборник–отстойник 8, выполненный в виде вертикального прямоугольного корпуса с пирамидальным днищем, средняя зона корпуса которого снабжена продольными щелевыми воздушными каналами 9, образуя зону нагрева 10, коническое днище циклона 6 соединено через трубопровод 11, снабженный запорной арматурой 12, гидрозатвором 13 и дросселем 14, с боковой стенкой корпуса конденсатосборника–отстойника 8 несколько ниже зоны нагрева 10, крышка конденсатосборника–отстойника 8 соединена через выхлопной газопровод 15, снабженный обратным клапаном 16 и запорной арматурой 17, с выходным газопроводом 18 с запорной арматурой, а его пирамидальное днище через трубопровод 19 с запорной арматурой 12 соединено с емкостью сбора конденсата (на фиг.1, 2 не показана), расположенной за пределами помещения ГРС.

В основу работы предлагаемого УКОПГ положены: состав природных газов, состоящих из углеводородов (СН4, С2Н6, С3Н8 и др.,) [Роддатис К.Ф., Соколовский Я.Б. Справочник по котельным установкам малой производительности.-М.: Энергия, 1975, С. 31, 32], которые способны при зимних температурах образовывать с водой, присутствующей в недостаточно осушенных газах, кристаллогидраты, скорость образования которых многократно возрастает при интенсивном перемешивании и понижении температуры газа [Стаскевич Н.А., Северинец Г.Н., Вигдорчик Д.Я.- Л.: Недра, 1990, С. 39], а плотность на порядки превышает плотность самого газа [Справочник химика, т. VI.-Л.: 1967, 21], конденсация водяных паров и образование кристаллогидратов при понижении температуры газа.

Установка используется в зимний период, когда наиболее возможно образование кристаллогидратных пробок, а расход природного газа максимальный.

УКОПГ работает следующим образом. Газ, содержащий капли конденсата, частицы кристаллогидратов углеводородов и механических примесей с давлением Р1 из входного газопровод 1 при закрытой запорной арматуре 2 и открытых запорных арматурах 5 через отводной газопровод 3, поступает в циклон 6 или батарею циклонов 6 (количество циклонов 6 зависит от производительности ГРС и диапазона изменения ее нагрузок), где за счет центробежных сил и значительной разности плотностей газовой фазы и примесей происходит его очистка от вышеупомянутых примесей, после чего газ, очищенный от капель конденсата, частиц кристаллогидратов углеводородов и механических примесей при давлении Р2, которое меньше Р1 за счет сопротивления циклона 6, через отводной газопровод 4 поступает во входной газопровод 1 и фильтр 7, где происходит его окончательная очистка. Отброшенные к стенке циклона 6 капли конденсата, частицы кристаллогидратов углеводородов и механических примесей, под действием сил тяжести стекают вниз в его коническое днище, откуда полученная жидкая смесь при давлении Р2 по трубопроводу 11 при открытой запорной арматуре 12 через гидрозатвор 13 и дроссель 14, где давление смеси снижается до Р3, поступает в конденсатосборник–отстойник 8. При этом сопротивление дросселя 14 регулируется таким образом, чтобы величина Р3 превышала величину давления редуцированного газа Р4 на величину сопротивления выхлопного газопровода 15, обратного клапана 16 и запорной арматурой 17, расположенной на нем с некоторым запасом (3–5%). В конденсатосборнике–отстойнике 8 происходит разделение жидкой смеси, состоящей из конденсата, частиц кристаллогидратов углеводородов и механических примесей за счет разности их плотностей под действием сил тяжести, в результате чего в верхнем слое собираются углеводороды, а нижний состоит из смеси водного конденсата и механических примесей. В то же время в результате снижения давления в конденсаторе–отстойнике 8 до Р3 и подогрева углеводородного слоя в зоне нагрева 10 воздухом, циркулирующим в помещении ГРС через щелевые воздушные каналы 9, в углеводородном слое происходит интенсивное разрушение кристаллогидратов с выделением углеводородных газов, которые через выхлопной газопровод 15 поступают в выходной газопровод 18, где смешиваются с редуцированным газом.

Удаление конденсата с механическими примесями из конденсатосборника–отстойника 8 осуществляется в зависимости от производительности ГРС постоянно или периодически через трубопровод 19 в емкость сбора конденсата (на фиг.1, 2 не показана), расположенную за пределами помещения ГРС.

Таким образом, узел комплексной очистки природного газа обеспечивает эффективную и экологичную очистку газа от водного конденсата, частиц кристаллогидратов и механических примесей, что предотвращает образование кристаллогидратной пробки в регуляторе давления (на фиг.1, 2 не показан) внутри ГРС (ГРП) и в выходном газопроводе 18 на выходе из ГРС (ГРП) и повышает надежность защиты газопровода от закупорки кристаллогидратными пробками.

Похожие патенты RU2656771C1

название год авторы номер документа
Установка комплексной очистки природного газа 2019
  • Ежов Владимир Сергеевич
  • Щедрина Галина Геннадьевна
  • Щедрин Дмитрий Геннадьевич
RU2710842C1
ЦЕНТРОБЕЖНО-КАПИЛЛЯРНАЯ УСТАНОВКА ДЛЯ КОМПЛЕКСНОЙ ОЧИСТКИ ГАЗА 2006
  • Ежов Владимир Сергеевич
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Лысых Виктор Васильевич
  • Ишков Павел Николаевич
  • Насенков Игорь Витальевич
RU2323768C1
УСТАНОВКА ДЛЯ КОМПЛЕКСНОЙ ОЧИСТКИ ГАЗА 2007
  • Ежов Владимир Сергеевич
  • Рагулин Сергей Михайлович
  • Кобелев Николай Сергеевич
  • Насенков Игорь Витальевич
  • Кожевников Игорь Николаевич
RU2363881C2
ПОЛИФУНКЦИОНАЛЬНЫЙ СТУПЕНЧАТЫЙ ВИХРЕВОЙ ОБОГРЕВАТЕЛЬ 2011
  • Ежов Владимир Сергеевич
  • Исаев Андрей Анатольевич
  • Кобелев Николай Сергеевич
  • Григорьев Сергей Борисович
RU2474769C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗА И УДАЛЕНИЯ КОНДЕНСАТА ИЗ ГАЗОПРОВОДА 2009
  • Ежов Владимир Сергеевич
RU2460008C2
СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА К СЖИГАНИЮ В КОТЛОАГРЕГАТАХ С КОМПЛЕКСНЫМ ИСПОЛЬЗОВАНИЕМ ЭНЕРГИИ ИЗБЫТОЧНОГО ДАВЛЕНИЯ ГАЗА ДЛЯ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ И ХОЛОДА, ВЫДЕЛЕНИЯ ГАЗОВОГО КОНДЕНСАТА, ПРОИЗВОДСТВА ВОДНОГО КОНДЕНСАТА И СИСТЕМА ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2007
  • Аксенов Дмитрий Тимофеевич
  • Лашкевич Екатерина Дмитриевна
  • Аксенова Галина Петровна
RU2338972C1
Газорегулировочная установка котельной 2023
  • Пантилеев Сергей Петрович
  • Малышев Владимир Сергеевич
RU2817103C1
Способ и устройство для обезвреживания и утилизации массива коммунальных отходов 2017
  • Ежов Владимир Сергеевич
RU2701678C2
СПОСОБ УТИЛИЗАЦИИ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ГАЗА, ТРАНСПОРТИРУЕМОГО В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ ПРИ РЕДУЦИРОВАНИИ НА ГАЗОРАСПРЕДЕЛИТЕЛЬНЫХ СТАНЦИЯХ, И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ 2001
  • Гайдукевич В.В.
  • Гусев В.Н.
  • Ивах А.Ф.
  • Комаров С.С.
  • Розенбаум Б.Л.
  • Русак А.М.
RU2175739C1
Способ безрасходной продувки узлов очистки газа 2023
  • Евсеенко Илья Викторович
  • Злобин Андрей Витальевич
  • Неретин Денис Анатольевич
  • Пыстина Наталья Борисовна
  • Хворов Георгий Анатольевич
RU2808153C1

Иллюстрации к изобретению RU 2 656 771 C1

Реферат патента 2018 года Узел комплексной очистки природного газа

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей: капель конденсата, кристаллогидратов углеводородов и механических частиц в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП). Технический результат достигается тем, что предлагаемый узел комплексной очистки природного газа содержит входной газопровод с отсекающим запорным устройством, соединенные с ним через отводные газопроводы и запорную арматуру, циклон (вариант – батарея циклонов), фильтр, конденсатосборник–отстойник, выполненный в виде вертикального прямоугольного корпуса с пирамидальным днищем, средняя зона корпуса которого снабжена продольными щелевыми воздушными каналами, образуя зону нагрева, коническое днище циклона соединено через трубопровод, снабженный запорной арматурой, гидрозатвором и дросселем, с боковой стенкой корпуса конденсатосборника–отстойника ниже зоны нагрева, крышка конденсатосборника–отстойника соединена через выхлопной газопровод, снабженный обратным клапаном и запорной арматурой, с выходным газопроводом, а его пирамидальное днище соединено через трубопровод и запорную арматуру с емкостью сбора конденсата, расположенной за пределами помещения ГРС. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 656 771 C1

1. Узел комплексной очистки природных газов, включающий входной и выходной газопроводы с запорной арматурой, дроссель, конденсатосборник, емкость сбора конденсата, расположенную за пределами помещения ГРС, отличающийся тем, что входной газопровод снабжен отсекающей запорной арматурой и соединен через отводные газопроводы и запорную арматуру с циклоном и фильтром, конденсатосборник–отстойник выполнен в виде вертикального прямоугольного корпуса с пирамидальным днищем, средняя зона корпуса снабжена продольными щелевыми воздушными каналами, образуя зону нагрева, коническое днище циклона соединено через трубопровод, снабженный запорной арматурой, гидрозатвором и дросселем, с боковой стенкой корпуса конденсатосборника–отстойника ниже зоны нагрева, крышка конденсатосборника–отстойника соединена через выхлопной газопровод, снабженный обратным клапаном и запорной арматурой, с выходным газопроводом, а его пирамидальное днище соединено через трубопровод и запорную арматуру с емкостью сбора конденсата.

2. Узел комплексной очистки природных газов по п. 1 отличающийся тем, что входной газопровод соединен через отводной газопровод и запорную арматуру с батареей циклонов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656771C1

ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 1994
  • Наумейко А.В.
  • Чемезов А.Б.
  • Уткин Г.С.
  • Ширшов И.А.
  • Чагаев Н.Я.
RU2079040C1
УСТАНОВКА КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА ГАЗОВОГО ПРОМЫСЛА НЕФТЕГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2011
  • Лачугин Иван Георгиевич
  • Шевцов Александр Петрович
  • Безъязычная Надежда Александровна
  • Марушак Галина Максимовна
  • Тронько Нелля Владимировна
RU2451251C1
Полуавтомат для порядковой нумерации, например жетонов 1959
  • Ибрагимов Д.С.
  • Ширяев Я.В.
SU124943A1
УСТАНОВКА ДЛЯ КОМПЛЕКСНОЙ ОЧИСТКИ ГАЗА 2007
  • Ежов Владимир Сергеевич
  • Рагулин Сергей Михайлович
  • Кобелев Николай Сергеевич
  • Насенков Игорь Витальевич
  • Кожевников Игорь Николаевич
RU2363881C2
0
SU157602A1
SN 106402656 А, 15.02.2017.

RU 2 656 771 C1

Авторы

Ежов Владимир Сергеевич

Щедрина Галина Геннадьевна

Лорткипанидзе Тамара Рамдиевна

Францов Алексей Сергеевич

Даты

2018-06-06Публикация

2017-09-08Подача