Автономный воздухонагреватель Российский патент 2018 года по МПК F24H3/02 

Описание патента на изобретение RU2656773C1

Предлагаемое изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях.

Известен газовый воздухонагреватель (газовая тепловая пушка), содержащий газосжигающее устройство (горелку), камеры сгорания газа и смешения очищенных продуктов сгорания с нагреваемым воздухом, вентилятор-нагнетатель с электродвигателем, прикрепленный к камере сгорания теплообменный аппарат в форме трубы, на внешней поверхности которой смонтированы сетчатые интенсификаторы, на конце теплообменного аппарата установлен каталитический насадок, на входе в который выполнен газоподающий патрубок для подвода дополнительного объема газа [Патент РФ №2145050, F26B23/02, F24H3/00, 2000].

Основными недостатками известного газового воздухонагревателя являются невозможность подачи воздуха без внешнего источника электрической энергии и регенерации каталитического насадка, что не позволяет использовать его в автономном режиме и снижает экономическую и экологическую эффективность.

Более близким к предлагаемому изобретению является автономная тепловая пушка, включающая цилиндрический корпус, снабженный опорами, внутри установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, внутренний торец которой герметически соединен с инжектором, между наружной поверхностью цилиндрической камеры сгорания и стенкой цилиндрического корпуса, расположена кольцевая тепловая камера, сзади цилиндрического корпуса расположен насадок для очистки продуктов сгорания, с полостью, заполненной гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом на поверхности цилиндрической камеры сгорания–теплообменника устроены термоэлектрические звенья, состоящие из прямоугольных вставок, выполненных из термостойкого диэлектрического материала, внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, состоящих из пар параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ, образующих термоэлектрические звенья, омываемых в тепловой камере приточным воздухом, подаваемым вентилятором, причем каждое термоэлектрическое звено попарно соединены между собой перемычкой, а с противоположного конца термоэлектрические звенья соединены электрическими конденсаторами, образуя термоэлектрические секции и термоэлектрический блок в форме разомкнутого кольца, первый и последний из конденсаторов которого соединены через токовыводы с преобразователем, аккумулятором и электродвигателем вентилятора [Патент РФ №2611700, F24H3/04, 2017].

Основным недостатком известного устройства является низкая выработка электричества термоэлектрическими звеньями, обусловленная их конструкцией (спаи термоэмиссионных преобразователей находятся внутри прямоугольных вставок, образующих термоэлектрические звенья), и помещение прямоугольных вставок в прямоугольные гнезда корпуса цилиндрической камеры сгорания, что не обеспечивает прямого контакта спаев с дымовыми газами, многократно увеличивает термическое сопротивление теплопередаче, снижая, соответственно, разность температур на холодных и горячих спаях термоэмиссионных преобразователей, уменьшая таким образом выработку термоэлектричества и экономическую эффективность автономной тепловой пушки.

Техническим результатом предлагаемого изобретения является увеличение экономической эффективности автономного воздухонагревателя.

Технический результат достигается автономным воздухонагревателем, включающим цилиндрический корпус, снабженный опорами, внутри которого установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, внутренний торец которой герметически соединен с инжектором, наружный торец соединен насадком для очистки продуктов сгорания, заполненным гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом поверхность теплообменной части камеры сгорания выполнена с горизонтальными прямоугольными щелями, снабженными на своих торцах опорными уголками, обращенными внутрь, в вышеупомянутые прямоугольные щели вставлены термоэлектрические звенья, каждый из которых состоит из верхнего и нижнего рядов, выполненных из 2–х параллельных металлических полос, покрытых изнутри слоем термостойкого диэлектрического материала, между которыми зажаты спаи параллельно расположенных термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой и расположенных с образованием некоторого зазора шириной Δ между собой, причем участки проволочных отрезков между верхним и нижним рядами металлических полос помещены в прямоугольные вставки, выполненные из термостойкого диэлектрического теплоизолирующего материала, а торцы нижних рядов металлических полос каждого термоэлектрического звена на начальном и среднем участке камеры сгорания прижаты к опорным уголкам уплотнительными кольцами, каждое термоэлектрическое звено у начального участка попарно соединены между собой перемычкой, а у среднего участка электрическими конденсаторами, образуя термоэлектрические секции и термоэлектрический блок, первый и последний из вышеупомянутых конденсаторов которого соединены через токовыводы, преобразователь и аккумулятор с электродвигателем.

На фиг. 1, 2 представлены общий вид и разрезы автономного воздухонагревателя (АВН), на фиг. 3–7 – узлы стыковки термоэлектрических звеньев с камерой сгорания АВН.

Предлагаемый АВН содержит цилиндрический корпус 1, снабженный опорами 2, внутри которого по ходу движения воздуха коаксиально установлены вентилятор 3 с электродвигателем 4, горелка 5 с инжектором 6, соединенная с подводящим газопроводом (на фиг. 1–7 не показан), цилиндрическая камера сгорания, совмещенная с теплообменником (КСТО) 7, внутренний торец которой герметически соединен с инжектором 6, наружный торец выступает на некоторое расстояние от торца корпуса трубы 1, образуя выпускной участок 8, перфорированный продольными щелями 9, между наружной поверхностью КСТО 7 и стенкой корпуса 1 расположена кольцевая тепловая камера 10, в которой расположена теплообменная часть 11 КСТО 7, при этом поверхность теплообменной части 11 кроме начального и среднего участков 12 и 13, на которых надеты уплотнительные кольца 14, выполнена с горизонтальными прямоугольными щелями 15, снабженными на своих торцах опорными уголками 16, обращенными внутрь, сзади цилиндрического корпуса 1 размещается насадок для очистки продуктов сгорания 17, состоящий из наружной и внутренней перфорированных оболочек 18 и 19, соответственно, с полостью 20 между ними, заполненной гранулами металлургической пемзы 21, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, причем внутренняя оболочка 19 выступает своим торцом на некоторое расстояние от наружной оболочки 18, образуя участок, перфорированный также продольными щелями 9, который надет на выпускной участок 8 КСТО 7. В прямоугольные щели 15 вставлены термоэлектрические звенья (ТЭЗ) 22, каждое из которых состоит из верхнего и нижнего рядов 23, выполненных из 2–х параллельных металлических полос 24, покрытых изнутри слоем термостойкого диэлектрического материала 25 (например, полосами слюды), между которыми зажаты спаи 26, параллельно расположенных термоэмиссионных преобразователей (ТЭП) 27, каждый из которых представляет собой пару параллельных проволочных отрезков 28 и 29, выполненных из разных металлов М1 и М2, спаянных на концах между собой и расположенных с образованием некоторого зазора шириной Δ между собой (значение Δ выбирается из условий надежной изоляции отрезков 28 и 29), причем участки проволочных отрезков 28 и 29 между верхним и нижним рядами 23 помещены в прямоугольные вставки 30, выполненные из термостойкого диэлектрического теплоизолирующего материала, а торцы нижних рядов 23 каждой ТЭЗ 22 прижаты к опорным уголкам 16 уплотнительными кольцами 14. Каждое ТЭЗ 22 у начального участка 12 попарно соединены между собой перемычкой 31, а у среднего участка 13 электрическим конденсатором 32, образуя термоэлектрические секции (ТЭС) 33, которые, в свою очередь, последовательно соединены между собой также через электрические конденсаторы 32, образуя термоэлектрический блок (ТЭБ) 34 в форме разомкнутого кольца, при этом первый и последний из вышеупомянутых конденсаторов 32 ТЭБ 34 соединены через токовыводы 35 и 36, преобразователь и аккумулятор (на фиг. 1–7 не показаны) с электродвигателем 4.

В основу работы предлагаемого АВН положено использование эффекта термоэлектричества для обеспечения работы вентилятора 3 и гранулированного доменного шлака 21 в качестве адсорбента для вредных компонентов выхлопных газов из КСТО 7. Так как ТЭЗ 22 состоит из рядов 23, выполненных из 2–х параллельных металлических полос 24, покрытых изнутри слоем термостойкого диэлектрического материала 25 (например, полосами слюды), между которыми зажаты спаи 26 ТЭП 27, то при нагреве одних спаев 26 и металлических полос 24, расположенных непосредственно в КСТО 7 и охлаждении противоположных спаев 26 и металлических полос 24 приточным воздухом из вентилятора 3, возникает значительно большая разность температур, чем в известной автономной пушке, в результате чего, в ТЭП 27 ТЭЗ 22 возникает также значительно большая ЭДС термоэлектричества [С.Г. Калашников. Электричество. – М: «Наука», 1970, с. 502–506].

Использование гранулированного доменного шлака (металлургической пемзы) 21 в качестве адсорбента основано на высоком значении его модуля основности, который придает гранулам металлургической пемзы 21 основные свойства [Строительные материалы. Справочник. Под ред. Болдырева А. С. и др. –М.: Стройизд.,1989, с. 423; Домокеев А. К. Строительные материалы. – М.: Высш. школа, 1989, с. 163], позволяющие сорбировать на поверхности шлака вещества, обладающие кислыми свойствами, к которым относятся вредные компоненты газообразных продуктов сгорания топлива АВН (природного газа или солярового масла), а именно, оксиды азота (NOx), оксиды серы (SOx), оксиды углерода (СОх).

При монтаже АВН желательно соблюдать следующее:

1. Полости в верхних и нижних рядах 23 между спаями 26 ТЭП 27 заполняют термостойким герметиком (на фиг. 1–7 не показан);

2. Крепление противоположных металлических полос 24 и 25 друг к другу в рядах 23 осуществляется при помощи термостойкого клея или шплинтов;

3. В щели 15 нижние ряды 23 ТЭЗ 22 вставляют герметично таким образом, чтобы верхняя кромка каждого ряда 23 была на уровне наружной поверхности теплообменного участка 11.

АВН, представленный на фиг. 1–7, работает следующим образом. Топливо, например, природный газ из газового баллона или газопровода (на фиг. 1–7 не показаны) поступает в горелку 5, откуда струя газа поступает в инжектор 6, засасывая воздух, необходимый для горения, после чего газовоздушная смесь направляется в КСТО 7, где в начальном участке КСТО 7 происходит ее зажигание и горение, а далее до выпускного участка 8, охлаждение образовавшихся горячих выхлопных газов, приточным воздухом, подаваемым вентилятором 3. которые далее поступают в насадок для очистки продуктов сгорания 17, полость 20 которого заполнена гранулами металлургической пемзы 21. Поток выхлопных газов, проходят через отверстия в перфорированной внутренней оболочки 19 насадка 17, многократно соприкасается с поверхностью гранул 21, проникая вовнутрь их, очищается от вредных примесей (NOx, SOx, СОх), которые сорбируются на поверхности и внутри гранул 21. Полученные оксиды азота и серы, в свою очередь, взаимодействуют с частицами воды образующейся в порах гранул 21 в результате капиллярной конденсации паров воды, находящихся в выхлопных газах, с образованием соответствующих кислот HNO3 и H2SO4. Кроме того, на поверхности и в порах гранул 21 оседают мелкодисперсные частицы (сажа и пр.), после чего очищенные выхлопные газы через отверстия перфорированной наружной оболочки 18, выбрасываются наружу, где смешиваются с нагретым воздухом, поступающим из КСТО 7. Одновременно приточный воздух, подаваемый вентилятором 3, движущийся в кольцевой тепловой камере 10, нагревается до требуемой температуры за счет теплопередачи через стенку КСТО 7 горячими газообразными продуктами сгорания и выбрасывается в отапливаемое помещение.

Параллельно вышеописанным процессам охлаждения продуктов сгорания и нагрева приточного воздуха через стенку теплообменного участка 11 газообразные продукты сгорания нагревают нижние ряды 23 ТЭЗ 22, контактируя непосредственно с ними, а, именно, с металлическими полосами 24 и спаями 26 ТЭП 27, что позволяет нагревать спаи 26 до высокой температуры, а приточный воздух из вентилятора 3 охлаждает противоположные спаи 26 и металлические полосы 24, причем участки проволочных отрезков 28 и 29 между верхним и нижним рядами 23 изолированы от непосредственного контакта с продуктами сгорания и воздухом слоем диэлектрического теплоизолирующего материала прямоугольных вставок 30 и практически не охлаждаются приточным воздухом, в результате чего в в противоположных спаях 26 ТЭП 27 возникает значительно большая разность температур и, соответственно, значительно большая ЭДС термоэлектричества, чем в известной автономной пушке. Полученное термоэлектричество суммируется в ТЭБ 34 и через токовыводы 35 и 36, преобразователь и аккумулятор (на фиг. 1–7 не показаны) подается в электродвигатель 4.

Таким образом, увеличение разности температур на противоположных спаях 26 ТЭП 27 каждой ТЭЗ 22 достигается: во–первых, непосредственным контактом спаев 26 с горячими выхлопными газами и приточным воздухом, во–вторых, увеличением площади теплопередачи за счет устройства металлических полос в верхних и нижних рядах 23 и, в–третьих, за счет теплоизоляции участков проволочных отрезков 28 и 29 между верхним и нижним рядами 23 от непосредственного контакта с продуктами сгорания и воздухом слоем диэлектрического теплоизолирующего материала прямоугольных вставок 30.

Регулирование процесса очистки выхлопных газов и режима работы АВН осуществляется изменением живого сечения щелей 9 путем поворота насадка 17 и изменением расхода топлива, подаваемого в горелку 5. Если очистка выхлопных газов не требуется, то АВН можно использовать без насадка 17.

По окончании работы АВН производится регенерация адсорбента – гранулированного доменного шлака 21, для осуществления которой с КСТО 7 снимается насадок 17, после чего адсорбент промывается водой.

Величина разности электрического потенциала на токовыводах 35 и 36 АВН зависит от характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 28 и 29 ТЭП 27, числа их в ТЭЗ 22, числа ТЭС 33 в ТЭБ 34 и количества ТЭБ 34. Полученный электрический ток обеспечивает работу электродвигателя 4 вентилятора 3 и автономность работы АВН.

В результате, предлагаемый автономный воздухонагреватель обеспечивает нагрев воздуха для децентрализованного отопления помещений, очистку выхлопных газов и генерацию большего количества электрической энергии за счет эффекта термоэлектричества и непосредственного контакта спаев термоэмиссионных элементов с выхлопными газами, что повышает его экономическую эффективность.

Похожие патенты RU2656773C1

название год авторы номер документа
Автономная тепловая пушка 2015
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
  • Березин Сергей Владимирович
RU2611700C1
Автономный воздухоподогреватель 2018
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
  • Иванов Николай Иванович
  • Семичева Наталья Евгеньевна
  • Бурцев Алексей Петрович
RU2705193C2
Автономный газовый водонагреватель 2017
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Червяков Леонид Михайлович
  • Добросердов Олег Гурьевич
RU2688047C2
ГЛУШИТЕЛЬ-ОЧИСТИТЕЛЬ-ЭЛЕКТРОГЕНЕРАТОР ДЛЯ ОТРАБОТАВШИХ ГАЗОВ 2015
  • Ежов Владимир Сергеевич
RU2601075C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ ВЕНЕЦ ДЛЯ ДЫМОВОЙ ТРУБЫ 2015
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Бурцев Алексей Петрович
RU2600192C1
ТЕПЛОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2011
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Журавлев Александр Юрьевич
  • Якушев Александр Юрьевич
  • Березин Сергей Владимирович
RU2490563C2
ОБОГРЕВАТЕЛЬ-ЭЛЕКТРОГЕНЕРАТОР ДЛЯ ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО ПУНКТА 2015
  • Ишков Павел Николаевич
  • Ежов Владимир Сергеевич
  • Кобелев Андрей Николаевич
  • Амелин Виктор Викторович
RU2597327C1
САНИТАРНО-УТИЛИЗАЦИОННАЯ ПРИСТАВКА ДЛЯ ТЕПЛОГЕНЕРАТОРА КРЫШНОЙ КОТЕЛЬНОЙ 2014
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Косинов Андрей Владимирович
RU2559241C1
Комплексный термоэлектрический венец для дымовой трубы 2019
  • Ежов Владимир Сергеевич
  • Бурцев Алексей Петрович
  • Перепелица Никита Сергеевич
  • Дюкарев Алексей Андреевич
  • Грэдинарь Евгений Николаевич
  • Шевченко Ирина Михайловна
RU2723100C1
ТЕПЛОЭЛЕКТРОГЕНЕРАТОР ДЛЯ АВТОНОМНОГО ЭНЕРГОСНАБЖЕНИЯ 2015
  • Ежов Владимир Сергеевич
  • Березин Сергей Владимирович
RU2599087C1

Иллюстрации к изобретению RU 2 656 773 C1

Реферат патента 2018 года Автономный воздухонагреватель

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях. Автономный воздухонагреватель включает цилиндрический корпус, внутри которого установлены вентилятор с электродвигателем, цилиндрическая камера сгорания, совмещенная с теплообменником, поверхность теплообменной части камеры сгорания выполнена с горизонтальными прямоугольными щелями, снабженными на своих торцах опорными уголками, обращенными внутрь, в щели вставлены термоэлектрические звенья, каждое из которых состоит из верхнего и нижнего рядов, выполненных из 2–х параллельных металлических полос, покрытых изнутри слоем термостойкого диэлектрического материала, между которыми зажаты спаи параллельно расположенных термоэмиссионных преобразователей, участки проволочных отрезков между верхним и нижним рядами металлических полос помещены в прямоугольные вставки, выполненные из термостойкого диэлектрического теплоизолирующего материала, а торцы нижних рядов каждого термоэлектрического звена на начальном и среднем участке камеры сгорания прижаты к опорным уголкам уплотнительными кольцами. 7 ил.

Формула изобретения RU 2 656 773 C1


Автономный воздухонагреватель, содержащий цилиндрический корпус, внутри которого установлены вентилятор с электродвигателем, горелка с инжектором, цилиндрическая камера сгорания, совмещенная с теплообменником, внутренний торец которой герметически соединен с инжектором, наружный торец соединен с насадком для очистки продуктов сгорания, заполненным гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, поверхность теплообменной части камеры сгорания снабжена термоэлектрическими звеньями, состоящими из прямоугольных вставок, выполненных из термостойкого диэлектрического материала, в которые помещены термоэмиссионные преобразователи, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой, термоэлектрические звенья с одного конца попарно соединены между собой перемычками, а с противоположного конца последовательно электрическими конденсаторами, образуя термоэлектрические секции и термоэлектрический блок, который соединен через токовыводы, преобразователь и аккумулятор с электродвигателем, отличающийся тем, что поверхность теплообменной части камеры сгорания выполнена с горизонтальными прямоугольными щелями, снабженными на своих торцах опорными уголками, обращенными внутрь, в щели вставлены термоэлектрические звенья, каждое из которых состоит из верхнего и нижнего рядов, выполненных из 2–х параллельных металлических полос, покрытых изнутри слоем термостойкого диэлектрического материала, между которыми зажаты спаи параллельно расположенных термоэмиссионных преобразователей, участки проволочных отрезков между верхним и нижним рядами металлических полос помещены в прямоугольные вставки, выполненные из термостойкого диэлектрического теплоизолирующего материала, а торцы нижних рядов каждого термоэлектрического звена на начальном и среднем участке камеры сгорания прижаты к опорным уголкам уплотнительными кольцами.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656773C1

Автономная тепловая пушка 2015
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
  • Березин Сергей Владимирович
RU2611700C1
САНИТАРНО-УТИЛИЗАЦИОННАЯ ПРИСТАВКА ДЛЯ ТЕПЛОГЕНЕРАТОРА КРЫШНОЙ КОТЕЛЬНОЙ 2014
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Косинов Андрей Владимирович
RU2559241C1
ТЕПЛОЭЛЕКТРОГЕНЕРАТОР 1999
  • Баев В.К.
  • Чусов Д.В.
  • Фролов А.Д.
  • Долматов В.Л.
  • Гаранин А.Ф.
RU2166702C1
ТЕПЛООБМЕННИК 2011
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Алябьева Татьяна Васильевна
  • Катунин Сергей Валерьевич
  • Жмакин Виталий Анатольевич
RU2484405C1
WO 2011130373 A2, 20.10.2011.

RU 2 656 773 C1

Авторы

Ежов Владимир Сергеевич

Емельянов Сергей Геннадьевич

Добросердов Олег Гурьевич

Березин Сергей Владимирович

Семичева Наталья Евгеньевна

Даты

2018-06-06Публикация

2017-08-25Подача