Способ зональной регистрации абонентского терминала сети персональной спутниковой связи Российский патент 2018 года по МПК H04W40/00 H04L29/06 

Описание патента на изобретение RU2658879C1

Изобретение относится к области выбора пути связи, а именно к способу регистрации абонентского терминала сети персональной спутниковой связи.

Из уровня техники известен выбранный в качестве наиболее близкого аналога способ регистрации абонентского терминала (АТ) в сетях подвижной связи (СПС) (см. US9094921B1, 28.07.2015), который осуществляется следующим образом: АТ СПС, находясь в движении, постоянно принимает пилот-сигнал от различных базовых станций (БС) и оценивает значения отношения мощности принимаемого сигнала к мощности шума (далее по тексту – значение отношения сигнал/шум). Для регистрации выбирается БС, от которой принимается пилот-сигнал с большим значением отношения сигнал/шум. Когда АТ находится в неподвижном состоянии, то он постоянно зарегистрирован в одной выбранной БС. При движении АТ и соответственно изменении значения отношения сигнал/шум от БС АТ приходится постоянно перерегистрироваться и соответственно излучать в адрес БС сигнал запроса на регистрацию. Так как скорость изменения положения АТ относительно БС невелика (учитывается скорость перемещения из зоны радиопокрытия (ЗРП) одной БС в ЗРП соседней БС со скорости ходьбы пешком или скорости движения наземного транспортного средства), к тому же пользователь АТ не всегда может находится в движении, то энергетические затраты на излучение запросных сигналов на регистрацию не являются столь существенными.

Недостатком указанного способа является то, что при использовании в качестве БС низкоорбитальных спутников ретрансляторов (НОСР) в сетях персональной спутниковой связи (СПерСС) необходимо учитывать тот факт, что НОСР движутся по орбите с космическими скоростями и АТ в ЗРП одного НОСР, находящегося на полярной круговой орбите высотой 950 км, будет находиться в среднем около 10–15 минут. Следовательно, в течение одного часа АТ даже если он находится на одном месте необходимо будет пройти процедуру перерегистрации в среднем около 4–6 раз. Отличительно особенностью СПерСС по сравнению с наземными мобильными сетями является то, что в наземных сетях расстояние от АТ до БС составляет от 15 до 30 километров, в СПерСС минимальное расстояние от АТ до НОСР равно высоте обриты и в рассматриваемом случае составляет 950 км. Для излучения сигналов на такие расстояния требуются гораздо большие энергетические затраты. Исходя из вышесказанного следует, что метод регистрации применяемый в СПС не применим в СПерСС.

Техническим результатом указанного изобретения является сокращение энергетических потерь при регистрации абонентского терминала сети персональной спутниковой связи.

Заявленный технический результат достигается за счет применения способа зональной регистрации абонентского терминала сети спутниковой связи, включающего регистрацию абонентского терминала в зоне радиосвязи, для этого поверхность земного шара разбивают на зоны радиосвязи, образуя матрицу радиосвязи, таким образом, чтобы размер самой большой зоны радиосвязи, которая расположена у экватора, был не больше зоны радиопокрытия низкоорбитального спутника-ретранслятора, при этом перерегистрация абонентского терминала осуществляется только тогда, когда абонентский терминал меняет свое местоположение таким образом, что переходит из одной зоны радиосвязи в другую, для регистрации в зоне радиосвязи абонентский терминал сообщает о своем местонахождении в одной из зон радиосвязи серверам местоположения абонентов, находящимся в центре управления сетью, в каждой шлюзовой станции и в каждом низкоорбитальном спутнике-ретрансляторе, а регистрация в низкоорбитальном спутнике-ретрансляторе происходит только при передаче информации.

Абонентский терминал постоянно определяет свое местоположение относительно матрицы распределения зоны радиосвязи одним из следующих способов: от навигационных систем ГЛОНАСС/GPS, от базовых станций сетей подвижной связи 2G, 3G и 4G, от низкоорбитального спутника-ретранслятора и в случае изменения своего местоположения абонентский терминал сообщает серверам местоположения абонентов о своем местонахождении одним из следующих способов: в автоматическом режиме по сети подвижной связи, в автоматическом режиме по сети персональной спутниковой связи, в ручном режиме пользователем абонентского терминала по сети Internet или телефонной сети общего пользования.

Заявленное изобретение проиллюстрировано следующими чертежами.

Фиг.1 - распределение зонах радиосвязи (ЗРС).

Фиг.2 - распределение орбитальных плоскостей (ОП) по поверхности земного шара относительно полюсов.

Фиг.3 - граф состояний системы связи, описывающий процедуры сообщения о нахождении в ЗРС АТ при работе в наземной сети подвижной связи (СПС) и при работе в СПерСС.

Фиг.4 - алгоритм сообщения о нахождении в ЗРС АТ при работе в наземной сети подвижной связи (СПС) и при работе в СПерСС.

Фиг.5 - обобщенный алгоритм передачи сигнала вызова на АТ СПерСС абонентом наземных сетей и установления связи с ним.

Фиг.6 - обобщенный алгоритм передачи сигнала вызова на АТ СПерСС от АТ и установления связи с ним.

Фиг.7 - подробный алгоритм передачи сигнала вызова на АТ СПерСС абонентом наземных сетей.

Фиг.8 - подробный алгоритм передачи сигнала вызова на АТ СПерСС от АТ СПерСС.

Фиг.9 - подробный алгоритм приема сигнала вызова на АТ СПерСС.

На фигуре 3:

– S100 – стояние работы в СПС;

– S101 – состояние определения первичного местоположения АТ относительно ЗРС или состояние определения перехода АТ в другую ЗРС;

– S102 – состояние передачи сообщения информации о своем местоположении АТ на базовую станцию (БС), зарегистрировавшую АТ, для дальнейшей ретрансляции по наземным каналам связи (КС) ближайшему региональному СОМП;

– S103 – состояние передачи информации о местоположении АТ по наземным каналам связи (КС) ближайшему региональному СОМП;

– S104 – состояние записи информации о местоположении АТ в базы данных (БД) ближайшего регионального СОМП;

– S105 – передачи сообщения информации о местоположении АТ на ближайшую ШС;

– S106 – состояние записи информации о местоположении АТ в базы данных (БД) СОМП ближайшей ШС;

– S107 – передачи сообщения информации о местоположении АТ на все ШС;

– S108 – состояние записи информации о местоположении АТ в БД СОМП всех ШС;

– S109 – передачи сообщения информации о местоположении АТ на ЦУС;

– S110 – состояние записи информации о местоположении АТ в БД СОМП ЦУС;

– S111 – передачи сообщения информации о местоположении АТ на находящийся на связи НОСР;

– S112 – состояние записи информации о местоположении АТ в БД СОМП находящегося на связи НОСР;

– S113 – передачи сообщения информации о местоположении АТ на все НОСР;

– S114 – состояние записи информации о местоположении АТ в БД СОМП всех НОСР.

– S1 – состояние работы на прием в СПерСС;

– S51 – состояние определения первичного местоположения АТ относительно ЗРС или состояние определения перехода АТ в другую ЗРС;

– S52 – состояние определения АТ оптимального НОСР для передачи по служебному каналу информации о своем местоположении;

– S53 – состояние передачи АТ информации о своем местоположении на находящийся на связи НОСР, для дальнейшей ретрансляции НОСР и ШС;

– S54 – состояние записи информации о местоположении АТ в БД СОМП находящегося на связи НОСР;

– S55 – передачи сообщения информации о местоположении АТ на все НОСР;

– S56 – состояние записи информации о местоположении АТ в БД СОМП всех НОСР.

– S57 – передачи сообщения информации о местоположении АТ на находящуюся на связи ШС;

– S58 – состояние записи информации о местоположении АТ в БД СОМП находящейся на связи ШС;

– S59 – передачи сообщения информации о местоположении АТ на все ШС;

– S60 – состояние записи информации о местоположении АТ в БД СОМП всех ШС;

– S61 – передачи сообщения информации о местоположении АТ на ЦУС;

– S62 – состояние записи информации о местоположении АТ в БД СОМП ЦУС.

Заявленный способ зональной регистрации абонентского терминала сети персональной спутниковой связи осуществляется следующим образом. Регистрация АТ осуществляется не в базовой станции, функции которой выполняет НОСР, а в зонах радиосвязи (ЗРС) и поэтому перерегистрация АТ в ЗРС осуществляется только, когда АТ меняет свое место положение, т.е. переходит из одной ЗРС в другую. Непосредственно в НОСР АТ регистрируется, только тогда, когда ему необходимо передать информацию, а именно: перед установлением связи с другим АТ, для выхода в телефонную сеть общего пользования (ТфОП), для выхода в Интернет или при ответе сигнал вызова.

Поверхность земного шара разбивается на зоны радиосвязи (ЗРС), таким образом, чтобы размер самой большой ЗРС (у экватора) был не больше зоны радиопокрытия (ЗРП) низкоорбитального спутника-ретранслятора (НОСР).

При выборе орбитальной группировки (ОГ) с шестью орбитальными плоскостями (ОП) угловой диаметр зоны радиообзора (ЗРО) по широте равен 30°, т.к. 180°/6=30° и тогда диаметр ЗРО по широте равен 3340 км, т.к. 111,32*30°=3340.

При выборе ОГ по шесть космических аппаратов (КА) в одной ОП угловой диаметр зоны радиообзора (ЗРО) по долготе равен 30°, т.к. 360°/12=30° и тогда диаметр ЗРО по долготе равен 3334 км, т.к. 111,135*30°=3334.

Диаметр ЗРО по долготе не изменяется, диаметр ЗРО по широте уменьшается с ростом значения широты в градусах, т.к. 1 градус широты зависит от широты и рассчитывается по формуле: . Изменение диаметра ЗРО dро по широте при угловом диаметре радиообзора β=30° приведены в таблице 1.

Таблица 1

широта град 10 20 30 40 50 60 70 80 90 1 град широты км 110 105 96 85 72 56 38 19 0 Диаметр
ЗРО
км 3 289 3 138 2 892 2 558 2 147 1 670 1 142 580 0

При значениях углового диаметра по широте равному 30° и углового диаметра по долготе равному 30° поверхность земного шара покрывается сетью ЗРС, которую можно представить в виде матрицы из 12 столбцов (по количеству трасс ОП) по 6 строк (по количеству КА в одной ОП и находящимся в одном полушарии). Строки матрицы обозначим цифрами от 1 до 6 с изменением нумерации от южного полюса на северный полюс. Столбцы матрицы обозначим буквами латинского алфавита от A до F с изменением от нулевого меридиана на восток и запад.

Размеры ЗРС будут изменяться в зависимости от широты. Распределение строк матрицы относительно градусной сетки земного шара по широте и размеры ЗРС для строк 1–6 указаны в таблице 2.

Распределение столбцов матрицы относительно градусной сетки земного шара по долготе указаны в таблице 3.

Таблица 2

Наименование параметра Ед. изм. Номер строки 1 и 6 2 и 5 3 и 4 Широта максимальная град 90° 60° 30° минимальная град 60° 30° Длина стороны ЗРС по долготе км 3 334 3 334 3 334 Длина стороны ЗРС по широте максимальная км 1 670 2 892 3340 минимальная км 0 1 670 2 892

Таблица 3

Полушарие Долгота A B C D E F Восточное мин. 15°в.д. 15°в.д. 45°в.д. 75°в.д. 105°в.д. 135°в.д. макс. 15°з.д. 45°в.д. 75°в.д. 105°в.д. 135°в.д. 165°в.д. Западное мин. 165°в.д. 135°з.д. 105°з.д. 75°з.д. 45°з.д. 15°з.д. макс. 165°з.д. 165°з.д. 135°з.д. 105°з.д. 75°з.д. 45°з.д.

Для простоты отображения на фиг.1 все ЗРС имеет форму квадрата, а в реальности ЗРС имеют формы трапеций и треугольников, стороны которых представляют собой дуги широты и долготы.

В зависимости от высоты орбиты изменяется диаметр мгновенной ЗРП и поэтому изменятся количество ОП и количество КА в одной ОП, следовательно, может изменяться количество строк и столбцов в матрице.

Распределение ОП по поверхности земного шара относительно полюсов показано на фиг.2.

АТ постоянно определяет свое местоположение относительно предложенной выше матрицы распределения ЗРС. Для регистрации в ЗРС АТ сообщает о своем нахождении в той или иной ЗРС серверам определения местоположения (СОМП) абонентов, находящемся в центре управления сетью (ЦУС), в каждой шлюзовой станции (ШС) и в каждом НОСР.

АТ может сообщать СОМП следующим образом:

1) в автоматическом режиме по сети СПС;

2) в автоматическом режиме по сети СПерСС;

3) в ручном режиме пользователем АТ по сети Internet или телефонной сети общего пользования (ТфОП).

АТ может определять свое местоположение относительно матрицы распределения ЗРС следующими способами:

1) от навигационных систем ГЛОНАСС/GPS – самый точный способ, но требует больших энергозатрат из-за большой вычислительной нагрузки на микропроцессор АТ;

2) от базовых станций (БС) сетей подвижной связи (СПС) 2G, 3G и 4G – менее точный способ; не требует больших энергозатрат, т.к. координаты определяют БС СПС, но необходимо наличие СПС и работа на излучение модема СПС в составе АТ;

3) от НОСР – способ, дающий приблизительные значения координат.

В служебном канале каждого луча НОСР излучает на землю пилот-сигналы, в которых передаются текущие мгновенные координаты трассы прохождения этих лучей по земной поверхности. По уровню принимаемого пилот-сигнала АТ определяет наиболее близкий луч и по принимаемой от него информации о трассе прохождения определяет свое приблизительное местоположение.

Если АТ оказывается на границе двух ЗРВ, то для уточнения своих координат он делает запрос в ГЛОНАСС-приемник.

АТ постоянно находится в режиме приема радиосигналов служебных каналов от всех лучей всех НОСР, находящихся в мгновенной зоне радиовидимости (ЗРВ) АТ.

При необходимости вызвать АТ пользователь другого АТ, смартфона, планшета или подключенного к сети интернет персонального компьютера (ПК) набирает ID вызываемого АТ (имя, номер телефона или IP-адрес) и нажимает вызов. Для вызова АТ по сети ТфОП можно набирать только номер телефона вызываемого АТ.

При вызове АТ с наземного терминала (по смартфона, планшета, или подключенного к сети интернет ПК) по протоколу сигнализации SIP, применяемого в IP-сетях, маршрутизатор по IP-адресу вызываемого АТ определяет, что вызываемый абонент является абонентом СПерСС и строит маршрут к ближайшей ШС СПерСС.

СОМП ШС, ЦУС и НОСР постоянно обмениваются своими базами данных зарегистрированных абонентов (БДЗА). ЦУП рассчитывает баллистические прогнозы (БП) положения КА на орбите, времени прохождения трасс КА относительно ЗРС и рассылает данную баллистическую информацию серверам БП ЦУС, ШС и НОСР.

СОМП ШС по собственным базам данных зарегистрированных абонентов (БДЗА) определяет в какой ЗРС находится вызываемый АТ и затем по БД баллистических прогнозов (БДБП) положения КА вычисляет трассы каких НОСР проходят в текущий момент в данной ЗРС. На основании этой информации маршрутизатор ШС выбирает оптимальный для ретрансляции сигналов вызова НОСР, находящийся в его ЗРВ, и модем ШС ретранслирует сигнал вызова по фидерной радиолинии (ФРЛ) на находящийся в его ЗРВ НОСР.

НОСР, принявший от ШС, сигнал вызова по собственным базам данных зарегистрированных абонентов (БДЗА) определяет в какой ЗРС находится вызываемый АТ и затем по БД баллистической информации (БДБИ) (прогнозов положения КА) вычисляет трассы каких НОСР проходят в текущий момент в ЗРС, вызываемого АТ. Затем маршрутизатор НОСР, получившего сигнал вызова от ШС, строит маршруты ко всем НОСР, находящимся в ЗРС вызываемого АТ, и БРК НОСР ретранслирует сигнал вызова по межспутниковым каналам связи, т.к. все КА связаны между собой межспутниковыми каналам связи, маршрутизируется на все НОСР, трассы которых в текущий момент проходят через ЗРС вызываемого АТ.

Все НОСР, находящиеся в заданной ЗРС и получившие сигнал вызова, транслируют сигналы вызова АТ со всех лучей в режиме широковещательной рассылки IP-пакетов (Broadcast) до тех пор, пока один из НОСР не получит ответ от вызываемого АТ. Длительность вызова АТ может быть различной в зависимости от категории срочности вызова, от категории вызывающего или вызываемого АТ.

АТ постоянно находится в режиме приема радиосигналов служебных каналов от пролетающих над ним НОСР. В служебном канале каждого луча передается пилот-сигнал и сигнализация канала вызова IP-телефонии. Маршрутизатор АТ постоянно читает заголовки IP-пакетов сигналов вызова и определив, IP-пакет вызова предназначен ему, начинает готовить ответ вызвавшему его терминалу.

Сначала АТ определяет наиболее оптимальный НОСР для отправки ему сигнала запроса на регистрацию. Затем АТ отправляет в служебном канале обратной связи сигнал запроса на регистрацию. НОСР, принявший сигнал запроса на регистрацию, при наличии свободного ресурса бортового ретрансляционного комплекса (БРК) абонентской радиолинии (АРЛ), предоставляет запрашиваемый ресурс БРК АРЛ. В зависимости от применяемого способа разделения каналов в АРЛ, может предоставляться: частотный ресурс, временное окно (Time Slot) или код псевдослучайной последовательности (ПСП).

НОСР сообщает АТ о предоставленном ему ресурсе в служебном канале. АТ принимает IP-пакеты с информацией о предоставлении ему ресурса БРК АРЛ и настраивает свой приемопередающий модуль для работы в указанном информационном канале.

Затем АТ формирует ответ о готовности принять вызов и передает его на БРК НОСР, в котором он только что зарегистрировался.

IP-пакеты ответа на вызов поступают в БРК АРЛ НОСР, бортовой маршрутизатор которого читает в заголовках IP-пакетов IP-адрес получателя и обращается к бортовому СОМП для определения местоположения вызывающего терминала.

Если вызывающий терминал является абонентом наземных сетей, то бортовой маршрутизатор определяет маршрут по межспутниковой радиолинии (МРЛ) до ближайшей ШС, а ШС маршрутизирует IP-пакеты ответа на вызывающий терминал по наземным каналам связи (НКС).

Если вызывающий терминал является абонентом СПерСС, то бортовой маршрутизатор делает запрос в бортовой СОМП для определения в какой ЗРВ зарегистрирован вызываемый АТ, затем бортовой маршрутизатор делает запрос в бортовой сервер баллистической информации (СБИ) для определения какие НОСР находятся в данный момент в ЗРВ вызываемого АТ. После этого бортовой маршрутизатор строит маршруты ко всем НОСР, находящимся в ЗРВ вызываемого АТ.

БРК НОСР, зарегистрировавшего вызывающий АТ, передает сигналы вызова по межспутниковым радиолиниям (МРЛ) на НОСР, находящимся в ЗРВ вызываемого АТ.

БРК НОСР, находящееся в ЗРВ вызываемого АТ, получив сигнал вызова, ретранслируют его по всем АРЛ на Землю.

Таким образом, применение заявляемого способа позволит сократить энергетические затраты при работе АТ в СПерСС и позволит более экономно задействовать ресурс служебного канала БРК НОСР.

Похожие патенты RU2658879C1

название год авторы номер документа
Способ назначения IP-адресов в сети персональной спутниковой связи на низкоорбитальных спутниках ретрансляторах с зональной регистрацией абонентских терминалов 2018
  • Пантелеймонов Игорь Николаевич
RU2679962C1
Система персональной подвижной спутниковой связи на основе сети низкоорбитальных спутников-ретрансляторов, обеспечивающая предоставление доступа в сеть Internet с носимого персонального абонентского терминала 2021
  • Пантелеймонов Игорь Николаевич
  • Потюпкин Александр Юрьевич
  • Горожанкин Леонид Васильевич
  • Бардёнков Вячеслав Васильевич
  • Березкин Владимир Владимирович
  • Пантелеймонов Илья Игоревич
  • Аджибеков Артур Александрович
  • Пантелеймонова Анна Валентиновна
  • Мырова Людмила Ошеровна
  • Щербатых Лилия Вячеславовна
  • Боцва Виктор Викторович
  • Тодуркин Владимир Владиславович
  • Ковалев Валерий Иванович
  • Филатов Владимир Витальевич
  • Пантелеймонов Тимофей Игоревич
  • Гончарук Анастасия Игоревна
RU2754947C1
Способ маршрутизации в сетях подвижной персональной спутниковой связи на низкоорбитальных спутниках-ретрансляторах с зональной регистрацией абонентов и маршрутизатор низкоорбитального спутника ретранслятора с интегрированными службами для осуществления указанного способа 2019
  • Пантелеймонов Игорь Николаевич
RU2714220C1
Архитектура абонентского терминала сети персональной спутниковой связи 2017
  • Пантелеймонов Игорь Николаевич
  • Пантелеймонова Анна Валентиновна
  • Аджибеков Артур Александрович
RU2661850C1
Способ организации связи с объектами, расположенными на орбите и поверхности планеты или спутника планеты, и система дальней космической связи для осуществления данного способа 2020
  • Пантелеймонов Игорь Николаевич
  • Горожанкин Леонид Васильевич
  • Пантелеймонов Илья Игоревич
  • Пантелеймонова Анна Валентиновна
  • Гончарук Анастасия Игоревна
  • Пантелеймонов Тимофей Игоревич
  • Монастыренко Андрей Александрович
  • Боцва Виктор Викторович
  • Филатов Владимир Витальевич
  • Белозерцев Александр Васильевич
  • Крючкова Мария Сергеевна
RU2752753C1
СИСТЕМА УПРАВЛЕНИЯ СРЕДСТВАМИ РАЗНЕСЕННОЙ ПЕРЕДАЧИ СИГНАЛОВ ЧЕРЕЗ СПУТНИКОВЫЕ РЕТРАНСЛЯТОРЫ 1996
  • Видемен Роберт Э.
RU2153226C2
УЧЕТ В СПУТНИКОВОЙ СИСТЕМЕ СВЯЗИ 1996
  • Видемен Роберт Э.
  • Монт Пол Э.
  • Сайтс Майкл Дж.
RU2140725C1
РЕГИОНАЛЬНАЯ СИСТЕМА МОБИЛЬНОЙ СПУТНИКОВОЙ СВЯЗИ И ОБСЛУЖИВАНИЯ ТРАНСПОРТНЫХ КОРИДОРОВ 2005
  • Горбулин Владимир Иванович
  • Каргу Дмитрий Леонидович
  • Фатеев Вячеслав Филиппович
RU2322760C2
Система управления полетом космического аппарата с применением в качестве ретрансляторов низкоорбитальных спутников, связанных между собой межспутниковыми линиями связи 2019
  • Потюпкин Александр Юрьевич
  • Пантелеймонов Игорь Николаевич
  • Саушкин Александр Михайлович
  • Моисеев Михаил Витальевич
  • Рогов Алексей Евгеньевич
  • Аджибеков Артур Александрович
  • Благодырев Владимир Александрович
  • Березкин Владимир Владимирович
  • Жодзишский Александр Исаакович
  • Селиванов Арнольд Сергеевич
  • Панцырный Олег Александрович
  • Кисляков Михаил Юрьевич
  • Останний Александр Иванович
  • Степанов Антон Максимович
  • Траньков Вячеслав Михайлович
  • Самаров Андрей Витальевич
  • Алпеев Вадим Александрович
  • Петрова Анна Михайловна
  • Крючкова Мария Сергеевна
RU2713293C1
МНОГОРЕЖИМНОЕ УСТРОЙСТВО СВЯЗИ С ОПРЕДЕЛЕНИЕМ МЕСТОПОЛОЖЕНИЯ 2002
  • Робинетт Роберт Л.
RU2315427C2

Иллюстрации к изобретению RU 2 658 879 C1

Реферат патента 2018 года Способ зональной регистрации абонентского терминала сети персональной спутниковой связи

Изобретение относится к регистрации абонентского терминала сети персональной спутниковой связи. Технический результат - сокращение энергетических потерь при регистрации терминала сети персональной спутниковой связи и экономия ресурсов служебного канала бортового ретрансляционного комплекса низкоорбитального спутника-ретранслятора. Для этого способ зональной регистрации абонентского терминала сети спутниковой связи включает регистрацию терминала в зоне радиосвязи, поверхность земного шара разбивают на зоны радиосвязи, образуя матрицу радиосвязи, где размер самой большой зоны радиосвязи, расположенной у экватора, не больше зоны радиопокрытия низкоорбитального спутника-ретранслятора, перерегистрация терминала осуществляется тогда, когда терминал меняет свое местоположение, переходя из одной зоны радиосвязи в другую, для регистрации в зоне радиосвязи терминал сообщает о своем местонахождении в одной из зон радиосвязи серверам местоположения абонентов, находящимся в центре управления сетью, в каждой шлюзовой станции и в каждом низкоорбитальном спутнике-ретрансляторе, а регистрация в низкоорбитальном спутнике-ретрансляторе происходит только при передаче информации. 2 з.п. ф-лы, 9 ил., 3 табл.

Формула изобретения RU 2 658 879 C1

1. Способ зональной регистрации абонентского терминала сети спутниковой связи, включающий регистрацию абонентского терминала в зоне радиосвязи, для этого поверхность земного шара разбивают на зоны радиосвязи, образуя матрицу радиосвязи, таким образом, чтобы размер самой большой зоны радиосвязи, которая расположена у экватора, был не больше зоны радиопокрытия низкоорбитального спутника-ретранслятора, при этом перерегистрация абонентского терминала осуществляется только тогда, когда абонентский терминал меняет свое местоположение таким образом, что переходит из одной зоны радиосвязи в другую, для регистрации в зоне радиосвязи абонентский терминал сообщает о своем местонахождении в одной из зон радиосвязи серверам местоположения абонентов, находящимся в центре управления сетью, в каждой шлюзовой станции и в каждом низкоорбитальном спутнике-ретрансляторе, а регистрация в низкоорбитальном спутнике-ретрансляторе происходит только при передаче информации.

2. Способ по п.1, отличающийся тем, что абонентский терминал сообщает серверам местоположения абонентов о своем местонахождении одним из следующих способов: в автоматическом режиме по сети подвижной связи, в автоматическом режиме по сети персональной спутниковой связи, в ручном режиме пользователем абонентского терминала по сети Internet или телефонной сети общего пользования.

3. Способ по п.1, отличающийся тем, что абонентский терминал определяет свое местоположение относительно матрицы распределения зоны радиосвязи одним из следующих способов: от навигационных систем ГЛОНАСС/GPS, от базовых станций сетей подвижной связи 2G, 3G и 4G, от низкоорбитального спутника-ретранслятора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658879C1

US 9094921 B1, 28.07.2015
УЧЕТ В СПУТНИКОВОЙ СИСТЕМЕ СВЯЗИ 1996
  • Видемен Роберт Э.
  • Монт Пол Э.
  • Сайтс Майкл Дж.
RU2140725C1
СИСТЕМА УПРАВЛЕНИЯ СРЕДСТВАМИ РАЗНЕСЕННОЙ ПЕРЕДАЧИ СИГНАЛОВ ЧЕРЕЗ СПУТНИКОВЫЕ РЕТРАНСЛЯТОРЫ 1996
  • Видемен Роберт Э.
RU2153226C2
US 5844521 A1, 01.12.1998
US 20080160993 A1, 03.07.2008.

RU 2 658 879 C1

Авторы

Пантелеймонов Игорь Николаевич

Пантелеймонова Анна Валентиновна

Даты

2018-06-25Публикация

2017-09-12Подача