ПОРТАТИВНЫЙ ПОЧВЕННЫЙ РЕСПИРОМЕТР ДЛЯ МОНИТОРИНГА ЭМИССИИ СО В АТМОСФЕРУ Российский патент 2018 года по МПК G01N21/35 G01N21/3504 G01N33/24 

Описание патента на изобретение RU2660380C1

Изобретение предназначено для использования в сельском хозяйстве и в отраслях народного хозяйства, отвечающих за экологическое обустройство окружающей среды при переработке органических отходов, рекультивации, восстановлении и озеленении территорий, выведенных из хозяйственного оборота.

Интенсивность эмиссии СО2 («дыхание» почвы) является одним из основных показателей биологической активности почвы и ее плодородия. В то же время почва вследствие воздушной миграции СО2 в атмосферу оказывается включенной в биосферный круговорот углерода в качестве одного из основных его продуцентов.

В указанных обстоятельствах мониторинг эмиссионных потоков СО2 из почвы в атмосферу имеет важное значение для решения практических и научных задач управления процессами метаболизма углеродсодержащих веществ в земледелии, почвоведении, экологии.

Соответственно технические средства измерения (почвенные респирометры) должны быть приспособлены к работе в системе почвенного мониторинга.

Принцип их работы основан на применении специальных камер для выборочной атмосферной изоляции отдельных представительских образцов, в качестве которых в одном варианте могут быть использованы небольшие (до 1 м2) учетные площадки, выделяемые в границах территории, занимаемой обследуемым природным почвенным объектом. В другом варианте - это почвенные навески, керны, забираемые пробоотборником из корневой зоны и междурядий на глубину 20 см, в которой почвенный горизонт имеет наиболее высокий уровень биологической активности.

Примеры показаны на с. 163 (фото 6.3) и с. 172 (рис. 6.5) в книге: Д.Л. Роуэлл «Почвоведение: методы и использование». М.: Колос, 1998. - 486 с. Первое изображение представляет собой прозрачную пластиковую полусферу диаметром около 1 м, установленную с легким углублением на поверхность почвы; второе - стандартную стеклянную колбу объемом 250 см3 с пробкой и размещенной внутри почвенной навеской 50 г. Как видно, используются камеры 2 типов: открытого в форме колпака или закрытого в форме какого-либо герметически закрываемого сосуда. Если такую камеру оснастить приспособлением для измерения количества «собранной» при дыхании углекислоты, получается почвенный респирометр.

Известно, например, что для этого внутри камеры на все время экспозиции размещают открытую чашку с налитым в нее специальным щелочным раствором, который поглощает углекислоту в темпе, одинаковом со скоростью ее выделения контролируемым образцом. В конце измерения по результатам титрования «отработанного» раствора рассчитывают общее количество выделенного почвой СО2, попавшего в камеру и, соответственно, поглощенного щелочью.

Наиболее подробно данный способ, называемый абсорбционным, в лабораторном его исполнении описан на с. 172-175 в упомянутой выше книге Д.Л. Роуэлла. Там же показано, каким образом полученные данные пересчитываются в эквивалентное количество СО2, отнесенное к объектам мониторинга, измеренным или в единицах площади (м2, га), или массы (г, кг, т).

Известные устройства, основанные на абсорбционном методе, описаны в следующих работах:

- В.И. Штатнов. К методике определения биологической активности почвы // Доклады ВАСХНИЛ, 1952, вып. 6, с. 27-33.

- Б.Н. Макаров. Упрощенный метод определения дыхания почвы (и биологической активности) // Почвоведение, 1957, №9, с. 119-122.

- Б.Н. Макаров. К методике определения интенсивности выделения СО2 из почвы // Почвоведение, 1970, №5, с. 139-143.

- И.Н. Шарков. Определение интенсивности продуцирования СО2 почвой абсорбционным методом // Почвоведение, 1984, №7, с. 135-143.

Кроме метода абсорбции известен также другой подход, называемый способом обогащения, который основан на измерении скорости увеличения концентрации СО2 в камере под влиянием почвенного дыхания. Его конструктивная реализация описана в работе: Б.Н. Макаров. Динамика газообмена между почвой и атмосферой в течение вегетационного периода под различными культурами севооборота // Почвоведение, 1952, №3, с. 271-277.

В качестве изолирующей камеры использовали стеклянный домик. Из него дважды с интервалом в 30 минут отбирали аспиратором две газовые пробы, каждая объемом по 2 л. В этих пробах с помощью поглотителя Рихтера определяли количество СО2 и уже по разности содержаний СО2 между пробами с учетом соотношения между величинами объемов проб и «свободным» воздушным объемом внутри камеры рассчитывали количество СО2, накопленное в камере за получасовой промежуток времени, т.е. в конечном итоге требуемую для мониторинга интенсивность эмиссии СО2 из почвы в атмосферу.

Представленные конструкции являются функциональным аналогом по отношению к заявленному проекту, но для него не подходят, прежде всего из-за несоразмерно больших габаритов и ряда других конструктивных особенностей, рассчитанных на единичное использование в научно-исследовательской работе. К таким особенностям относится необходимость выполнения во время мониторинга большого объема ручных работ с использованием трудоемких химико-аналитических приемов и средств, которые к тому же сложно автоматизировать и приспособить к работе в полевых условиях.

Большие перспективы появляются, если использовать для измерения автоматический ИК-газоанализатор, в связи с чем наиболее близким по технической сущности и результату является почвенный респирометр с камерой открытого типа в форме колпака, описанный на с. 256-259 в книге: А.В. Смагин «Газовая фаза почв». М.: МГУ, 2005. - 300 с.

Респирометр работает следующим образом. Камера своим открытым дном накрывает выбранную и подготовленную к измерению учетную площадку. Концентрация СО2 в камере измеряется с помощью портативного ИК-газоанализатора марки ПГА-7 (0-2% СО2), находящегося снаружи. Для этого в стенке камеры имеется отверстие, к которому при измерении присоединяется шприц для ручного отбора небольшой газовой пробы и ее последующей передачи в измерительный канал газоанализатора. В измерительном канале находится РЖ-сенсор СО2, сигнал которого, преобразованный и усиленный, отражается на ЖК-дисплее в виде текущих значений концентрации СО2. Последовательность этих измеренных значений используется для расчета эмиссионных потоков СО2 в соответствии с описанным выше способом обогащения.

Известным респирометром с камерой открытого типа нельзя измерять «дыхание» почвенных навесок и кернов, что ограничивает его применение в почвенном мониторинге. Другим недостатком является принудительная ручная передача газовых проб в газоанализатор, находящийся в удалении от камеры, что создает дополнительные неудобства и снижает точность измерения при работе в полевых условиях.

Поставили цель разработать устройство портативного почвенного респирометра двойного назначения с принципиально иным способом газовой коммуникации между контролируемым воздухом в камере и газоанализатором.

Конструкторская реализация была осуществлена в виде компактного портативного прибора, экспериментальный образец которого 180×120×65 мм массой 350 г (вместе с внешним источником питания - 470 г) представлен на фиг. 1а. На другом чертеже 1б этот же прибор представлен разобранным на основные элементы.

Заявленный результат был достигнут благодаря дополнительному приспособлению в виде специальной крышки, которая вместе с одним из типовых удерживающих замков и упругим уплотнителем герметически закрывает открытое дно камеры, позволяя измерять «дыхание» почвенных навесок и кернов. К тому же, такая закрытая конструкция создает возможность испытывать респирометр на герметичность и точность измерения по эталонным образцам.

Новое качество прибора по простоте и удобству эксплуатации было получено также в результате использования так называемого принципа «встраивания датчика в объект», когда контролирующий прибор или отдельный его сенсор в виде зонда, благодаря их миниатюрному размеру, удается разместить непосредственно внутри контролируемого устройства.

В данной конструкции в качестве готовых образцов были использованы: пищевой вакуумный контейнер типа GL 9215 и портативный 2-парометрический газоанализатор МТ 8057 (0-3000 ppm СО2 и 0-50°C), изготовленный по технологии NDIR. Их можно видеть на фиг. 1а. Здесь же показан внешний источник питания.

Контейнер изготовлен из прозрачного пластика и на фиг. 1б видно, что он состоит из 2 частей: собственно камеры объемом 600 см3 (поз. 1) и крышки (поз. 2) с защелками (поз. 3) и уплотнителем (поз. 4). Очевидно, что для контроля учетных площадок из полного комплекта достаточно применять только камеру. В другом же варианте дополнительно сверх стандартного набора используется специальный пластиковый лоток 135×95×40 мм (поз. 5) для почвенных образцов, укрываемых специальным воздушным фильтром в виде мягкого поролона или минеральной ваты (поз. 6).

Во время измерения прямо на этот фильтр своей тыльной перфорированной стороной укладывается непосредственно ИК-газоанализатор (поз. 7), который благодаря технологии изготовления NDIR, при имеющихся у него миниатюрных размерах корпуса 115×36×23 мм, занимает лишь сравнительно небольшую часть воздушного объема контейнера (примерно 90 см3 из 600 см3 самого небольшого контейнера из имеющихся в промышленном ассортименте). При таком непосредственном контакте газоанализатора с почвенным образцом через воздушный фильтр эмиссионный поток CO2 свободно через перфорацию в корпусе газоанализатора диффузионным образом достигает сенсорного элемента, находящегося внутри корпуса. Имеющийся на корпусе газоанализатора ЖК-дисплей позволяет через прозрачные стенки контейнера визуально наблюдать концентрацию СО2 и температуру.

В результате за счет простоты устройства и удобства эксплуатации конструкция нового респирометра получила более высокий качественный уровень.

Для проверки работоспособности разработанного прибора измерили «дыхание» дерново-подзолистой легкосуглинистой почвы на делянках полевого опыта с посевом овса, выращенного на четырех разных агрофонах согласно схеме:

1. Контроль (без удобрений).

2. Минеральный (N90P90K90).

3. Органический (подстилочный навоз КРС 10 т/га).

4. Органоминеральный (подстилочный навоз КРС 7 т/га + N60P60K60).

Для измерения в августе 2016 г. в фазу восковой спелости зерна на каждом из четырех агрофонов взяли по одному почвенному образцу массой 150 г, представляющему собой механическую смесь из пяти разных 30-граммовых почвенных кернов, отобранных на глубину 20 см в пяти разных точках, распределенных по площади каждой делянки.

Каждый отобранный таким образом смешанный образец влажностью 15% размещали в герметически закрытой камере респирометра. И далее за время экспонирования, которое продолжалось 60 минут, регулярно с интервалом 5 минут с помощью ЖК-дисплея фиксировали текущие значения постепенно нарастающей концентрации СО2, вызванные почвенным «дыханием». При этом респирометр во время измерения находился в тени под защитой от прямых лучей солнца, и температура воздуха внутри респирометра не превышала 20-21°C, а влажность увеличивалась постепенно от 60 до 75%.

В результате временная динамика накопления СО2 на разных почвенных агрофонах представлена по вариантам на фиг. 2.

Расчет выполнили по формуле для изолированного воздушного объема в камере закрытого типа

где q - интенсивность эмиссии СО2, ;

V - объем изолированного внутри камеры воздуха, см3;

t - температура воздуха, °C;

m - сухая масса контролируемого почвенного образца, г;

ΔС - прирост концентрации CO2, ppm;

Δτ - интервал времени, ч.

Контролируемый почвенный образец при полевой массе отобранного образца 150 г имеет сухую массу 127,5 г (при влажности 15%) и объем 115 см3 (при полевой объемной плотности 1,3 г/см3).

Для определения величины V из объема «пустой» камеры 600 см3 вычитаются объемы, занимаемые контролируемым почвенным образцом 115 см3 и конструкцией лотка для этого образца 65 см3. В результате V=330 см3.

В окончательном виде для температуры 20°C получается следующая расчетная формула:

Рассчитанные по этой формуле данные фиг. 2 мониторинга почвенной эмиссии CO2 в атмосферу сведены в таблицу 1.

Полученные результаты измерения и близкое соответствие с данными из представленных выше известных литературных источников (Д.Л. Роуэлл, с. 175; А.В. Смагин, с. 39) подтверждают техническую реализацию заявленного проекта и возможность его использования в практических и научных целях для мониторинга почвенной эмиссии CO2 в атмосферу у различных природно-хозяйственных объектов.

Похожие патенты RU2660380C1

название год авторы номер документа
Информационно-измерительная система мониторинга почвенной эмиссии СО в атмосферу 2022
  • Вострухин Александр Витальевич
  • Мастепаненко Максим Алексеевич
  • Габриелян Шалико Жораевич
  • Вахтина Елена Артуровна
RU2796117C1
Устройство для учёта СО в системе почва-растение-атмосфера 2023
  • Занилов Амиран Хабидович
  • Дударов Залим Исламович
  • Адаев Нурбек Ломалиевич
  • Бахов Мурат Тахирович
  • Машуков Ислам Альбертович
RU2804124C1
СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ ВОЗДУШНОГО РЕЖИМА В КОРНЕОБИТАЕМОЙ СРЕДЕ 2008
  • Сычев Виктор Гаврилович
  • Аканов Эдуард Николаевич
  • Кодяков Александр Андреевич
  • Москвяк Зиновий Иванович
RU2399194C2
Способ определения суммарной потери углерода и интегральной эмиссии диоксида углерода при осушении болот 2023
  • Пыленок Петр Иванович
RU2804735C1
Способ определения годового количества эмитированного углерода почвами лесостепной зоны 2023
  • Неведров Николай Петрович
  • Довидович Елена Дмитриевна
RU2811543C1
СПОСОБ КОНТРОЛЯ ДЫХАНИЯ ПОЧВЫ В ПОСЕВЕ 2012
  • Аканов Эдуард Николаевич
  • Аканов Игорь Эдуардович
RU2507517C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭМИССИИ ПАРНИКОВЫХ ГАЗОВ ИЗ ПОЧВЫ И РАСТЕНИЙ 2012
  • Авилов Виталий Константинович
  • Барков Василий Анатольевич
  • Васенев Иван Иванович
  • Васенев Вячеслав Иванович
  • Визирская Мария Михайловна
  • Пескарев Александр Александрович
  • Терехов Александр Витальевич
  • Курбатова Юлия Александровна
  • Самарджич Мильян
RU2518979C1
СПОСОБ ОЦЕНКИ ВЛИЯНИЯ АНТРОПОГЕННЫХ НАГРУЗОК НА ПОЧВЕННЫЙ ПОКРОВ ЧЕРНОЗЕМНО-ЛЕСОСТЕПНОЙ ЗОНЫ 1990
  • Зайцева Т.Ф.
RU2011199C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАНДАРТНЫХ ОБРАЗЦОВ ПОЧВЫ, ЗАГРЯЗНЕННОЙ ТЯЖЕЛЫМИ МЕТАЛЛАМИ 2017
  • Сычев Виктор Гаврилович
  • Ступакова Галина Алексеевна
  • Панкратова Клара Геннадьевна
  • Щелоков Владимир Ильич
  • Игнатьева Елена Эдуардовна
  • Щиплецова Татьяна Ивановна
  • Митрофанов Дмитрий Константинович
RU2660861C1
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ ПОЧВЫ 2006
  • Афанасьев Рафаил Александрович
  • Аканов Эдуард Николаевич
  • Сычев Виктор Гаврилович
  • Мерзлая Генриэта Егоровна
  • Смирнов Михаил Олегович
RU2331070C1

Иллюстрации к изобретению RU 2 660 380 C1

Реферат патента 2018 года ПОРТАТИВНЫЙ ПОЧВЕННЫЙ РЕСПИРОМЕТР ДЛЯ МОНИТОРИНГА ЭМИССИИ СО В АТМОСФЕРУ

Изобретение относится к области измерительной техники и может быть использовано для контроля экологического обустройства окружающей среды. Изобретение представляет собой портативный респирометрический прибор с автономным питанием, рассчитанный на оперативный контроль дыхательной эмиссии СО2 непосредственно по месту проведения почвенного мониторинга различных природно-хозяйственных объектов. Предложен портативный почвенный респирометр для мониторинга эмиссии СO2 в атмосферу, который представляет собой устройство, состоящее из двух функционально связанных между собой элементов: герметичной камеры в форме колпака с одной открытой стороной, накрывающего выбранный для контроля участок поля, посева, и портативного автоматического ИК-газоанализатора СO2. По дополнительному предназначению для контроля отобранных почвенных образцов, кернов открытая стороны камеры дополнительно оборудуется съемной крышкой, герметически закрывающей камеру через типовой уплотнитель с помощью типового замка, а внутри камеры размещается лоток, одна открытая сторона которого полностью укрывается в виде воздушного фильтра типовым воздухопроницаемым материалом. Технический результат - универсальность, предполагающая возможность почвенного мониторинга либо с помощью учетных площадок, либо с помощью специально отобранных почвенных проб, кернов. 1 з.п. ф-лы, 3 ил., 1 табл.

Формула изобретения RU 2 660 380 C1

1. Портативный почвенный респирометр для мониторинга эмиссии СO2 в атмосферу представляет собой устройство, состоящее из двух функционально связанных между собой элементов: герметичной камеры в форме колпака с одной открытой стороной, накрывающего выбранный для контроля участок поля, посева, и портативного автоматического ИК-газоанализатора СO2, отличающийся тем, что по дополнительному предназначению для контроля отобранных почвенных образцов, кернов открытая сторона камеры дополнительно оборудуется съемной крышкой, герметически закрывающей камеру через типовой уплотнитель с помощью типового замка, а внутри камеры размещается лоток, одна открытая сторона которого полностью укрывается в виде воздушного фильтра типовым воздухопроницаемым материалом.

2. Устройство по п. 1, отличающееся тем, что ИК-сенсор газоанализатора СO2 размещается отдельно в виде зонда непосредственно внутри камеры, соединяясь с остальными элементами газоанализатора либо по проводной линии через герметический электрический разъем в стенке камеры, либо по Wi-Fi каналу.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660380C1

СМАГИН А.В
"ГАЗОВАЯ ФАЗА ПОЧВ"
М.:МГУ, 2005, с.256-259
0
SU174321A1
CN 102053070 A, 11.05.2011
CN 104614337 A, 13.05.2015
CN 205898672 U, 18.01.2017
CN 105938091 A, 14.09.2016.

RU 2 660 380 C1

Авторы

Аканов Эдуард Николаевич

Мерзлая Генриэта Егоровна

Даты

2018-07-06Публикация

2017-05-16Подача