СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ IN SITU Российский патент 2018 года по МПК G01K11/00 G01N21/21 G01J4/00 G01J5/00 

Описание патента на изобретение RU2660765C1

Изобретение относится к измерительной технике, а именно к технике измерения физической температуры объекта по температурным изменениям его оптических постоянных, и может быть использовано для дистанционного измерения температуры объекта в промышленности, медицине, биологии, в физических исследованиях и др.

Известно дистанционное измерение температуры поверхности объекта, основанное на измерении температуры двух участков поверхности объекта, одну из которых выбирают в качестве опорной и по отношению к которой вычисляют дифференциальную излучательную способность и физическую температуру объекта [US 2007047615 А1, МПК G01G 5/08, опубл. 2007-03-01]. Этот способ позволяет повысить точность измерений за счет исключения влияния фона и помех, однако для реализации предложенного способа необходимо использовать яркостный пирометр, который должен работать в достаточно близких спектральных интервалах, в которых спектральные излучательные способности объекта принимаются равными. Кроме того, необходимым условием является достаточно близкое расположение друг к другу сигнальной и опорной поверхностей исследуемого объекта, что на практике не всегда возможно. Это ограничивает практическое применение предложенного способа.

Наиболее близким техническим решением к заявляемому является способ по патенту [US 5313044, МПК B23K 26/03, G01N 21/21, опубл. 17.05.1994 г. (прототип)]. Этот способ позволяет измерять состояние поляризации при отражении в видимом спектральном диапазоне и, следовательно, по измеренным эллипсометрическим параметрам ψ и Δ находить значение комплексного показателя преломления. Недостатками данного способа являются необходимость точной настройки оптической схемы эллипсометра для измерения температурной зависимости комплексного показателя преломления и использование специфических эллипсометрических моделей отражающей поверхности в случае многослойного или шероховатого образца. Также к существенному недостатку можно отнести то, что способ предполагает измерение температуры только при нагревании выше 0°С.

Технический результат изобретения заключается в повышении точности измерения температуры in situ независимо от структуры отражающей поверхности и при температурах до 4 K.

Технический результат достигается тем, что в способе бесконтактного измерения температуры in situ, заключающемся в том, что образец освещают поляризованным светом и измеряют изменение интенсивности при отражении, в процессе измерения регистрируют отраженное от поверхности образца электромагнитное излучение с длиной волны в диапазоне 300-900 нм, анализируют изменение интенсивности после отражения, находят температуру, решая следующее уравнение: M(T)=F(T), где

М(Т) - среднее арифметическое данных об интенсивности со всех четырех фотоприемников эллипсометра, зависящее от температуры,

F(T) - функция, вид которой зависит от исследуемого материала, новым является то, что для зондирующего пучка задают состояние линейной поляризации с поворотом 0°, что накапливают массив данных для дальнейшего усреднения, а также то, что предложенный способ позволяет измерять температуру образца от температуры 4 K до его термического разрушения.

Это отличие позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлен в других технических решениях при изучении данной и смежной областей техники и, следовательно, обеспечивает заявляемому решению соответствие критерию «изобретательский уровень».

На фиг. 1 представлена схема магнитоэллипсометрического комплекса in situ, работающего в широком диапазоне температур.

На фиг. 2 показана зависимость среднего по всем сигналам с фотоприемников эллипсометра от температуры, полученная в процессе выполнения эксперимента.

Устройство для бесконтактного измерения температуры in situ (Фиг. 1) состоит из источника линейно поляризованного света 1, входного сверхвысоковакуумного окна 2, исследуемого образца 4, выходного сверхвысоковакуумного окна 7, блока регистрации состояния интенсивности 8, сверхвысоковакуумной камеры 9, магистрали для откачки 6, обтюратора 10.

Измерения температуры происходят следующим образом. Источник линейно поляризованного света 1 генерирует зондирующее излучение 3, причем угол поворота плоскости поляризации относительно плоскости падения равен 0° и, проходя через входное сверхвысоковакуумное окно 2, попадает внутрь сверхвысоковакуумной камеры 9 и затем падает на поверхность исследуемого образца 4. Падающий, линейно поляризованный световой пучок отражается от поверхности образца с изменением интенсивности, обусловленным температурным воздействием на образец. Так как падающий свет поляризован в плоскости падения, то при изменении температуры образца и, как следствие, его оптических постоянных изменяется его отражательная способность. Отраженный от образца луч 5, выходя из высоковакуумной камеры через высоковакуумное окно 7, поступает в блок регистрации интенсивности 8. При этом оптические измерения проводят при двух положениях обтюратора 10, который перекрывает оптический тракт для учета фоновой засветки. Анализируя состояние интенсивности результирующего пучка, находят температуру Т, решая следующее уравнение:

где М(Т) - среднее арифметическое данных об интенсивности со всех четырех фотоприемников эллипсометра, зависящее от температуры,

F(T) - функция, вид которой зависит от исследуемого материала [Магунов А.Н. Лазерная термометрия твердых тел. - М.: Физматлит, 2001].

Заявляемый бесконтактный способ измерения температуры обладает следующими преимуществами:

- высоким быстродействием, которое определяется только типом приемника излучения и схемой обработки электрических сигналов. Современный уровень электронных устройств позволяет достичь значения постоянной времени до 10-3 с;

- возможностью измерения температуры движущихся объектов (при условии организации следящей системы) и элементов, находящихся под высоким напряжением;

- возможностью измерения высоких температур, при которых применение контактных средств измерения либо невозможно, либо время их работы невелико;

- возможностью измерения низких температур до 4 K, при которых применение пирометров технически труднореализуемо, а применение контактных методов дает большие погрешности;

- возможностью работы в условиях вакуума, агрессивных газовых сред, радиации и повышенной температуры окружающей среды при пространственном разнесении анализирующего приемника и сопутствующей электроники при помощи оптоволоконного кабеля.

Похожие патенты RU2660765C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ МАГНИТООПТИЧЕСКИХ ЭФФЕКТОВ in situ 2014
  • Косырев Николай Николаевич
  • Заблуда Владимир Николаевич
  • Тарасов Иван Анатольевич
  • Лященко Сергей Александрович
  • Шевцов Дмитрий Валентинович
  • Варнаков Сергей Николаевич
  • Овчинников Сергей Геннадьевич
RU2560148C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА 2015
  • Косырев Николай Николаевич
  • Заблуда Владимир Николаевич
RU2583959C1
Способ профилирования состава при эпитаксиальном формировании полупроводниковой структуры на основе твердых растворов 2019
  • Швец Василий Александрович
  • Михайлов Николай Николаевич
  • Дворецкий Сергей Алексеевич
  • Икусов Данил Геннадьевич
  • Ужаков Иван Николаевич
RU2717359C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЛИПСОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА 1991
  • Кирьянов А.П.
RU2008652C1
ЭЛЛИПСОМЕТР 2007
  • Спесивцев Евгений Васильевич
  • Рыхлицкий Сергей Владимирович
  • Борисов Андрей Геннадьевич
  • Швец Василий Александрович
RU2351917C1
ЭЛЛИПСОМЕТР 2005
  • Спесивцев Евгений Васильевич
  • Рыхлицкий Сергей Владимирович
  • Швец Василий Александрович
RU2302623C2
ЭЛЛИПСОМЕТРИЧЕСКИЙ КОМПЛЕКС ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ИССЛЕДОВАНИЙ 2007
  • Рыхлицкий Сергей Владимирович
  • Швец Василий Александрович
  • Прокопьев Виталий Юрьевич
  • Спесивцев Евгений Васильевич
RU2353919C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЛИПСОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА (ВАРИАНТЫ) 1997
  • Кирьянов А.П.
RU2149382C1
ЭЛЛИПСОМЕТР 2008
  • Чикичев Сергей Ильич
  • Рыхлицкий Сергей Владимирович
  • Прокопьев Виталий Юрьевич
RU2384835C1
СПОСОБ ЭЛЛИПСОМЕТРИЧЕСКОГО ИССЛЕДОВАНИЯ ТОНКИХ ПЛЕНОК НА ПЛОСКИХ ПОДЛОЖКАХ 1997
  • Никитин А.К.
RU2133956C1

Иллюстрации к изобретению RU 2 660 765 C1

Реферат патента 2018 года СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ IN SITU

Изобретение относится к измерительной технике, а именно к технике измерения физической температуры объекта по температурным изменениям его оптических постоянных, и может быть использовано для дистанционного измерения температуры объекта в промышленности, медицине, биологии, в физических исследованиях и др. Заявлен способ бесконтактного измерения температуры in situ, заключающийся в том, что образец освещают поляризованным светом и измеряют изменение интенсивности при отражении. В процессе измерения регистрируют отраженное от поверхности образца электромагнитное излучение с длиной волны в диапазоне 300-900 нм. Анализируют изменение интенсивности после отражения и находят температуру, решая следующее уравнение: M(T)=F(T), где М(Т) - среднее арифметическое данных об интенсивности со всех четырех фотоприемников эллипсометра, зависящее от температуры, F(T) - функция, вид которой зависит от исследуемого материала. Новым является то, что для зондирующего пучка задают состояние линейной поляризации с поворотом 0° и накапливают массив данных для дальнейшего усреднения, а также то, что предложенный способ позволяет измерять температуру образца от температуры 4 K до его термического разрушения. Технический результат - повышение точности измерения температуры in situ независимо от структуры отражающей поверхности и при температурах до 4 K. 2 ил.

Формула изобретения RU 2 660 765 C1

Способ бесконтактного измерения температуры in situ, заключающийся в том, что образец освещают поляризованным светом и измеряют изменение интенсивности при отражении, в процессе измерения регистрируют отраженное от поверхности образца электромагнитное излучение с длиной волны в диапазоне 300-900 нм, анализируют изменение интенсивности после отражения, находят температуру, решая следующее уравнение: M(T)=F(T), где

М(Т) - среднее арифметическое данных об интенсивности со всех четырех фотоприемников эллипсометра, зависящее от температуры,

F(T) - функция, вид которой зависит от исследуемого материала,

отличающийся тем, что для зондирующего пучка задают состояние линейной поляризации с поворотом 0°, что накапливают массив данных для дальнейшего усреднения, а также тем, что предложенный способ позволяет измерять температуру образца от температуры 4 K до его термического разрушения.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660765C1

US 5313044 A, 17.05.1994
US 20150219497 A1, 06.08.2015
US 5501637 A, 26.03.1996; US 6583875 B1, 24.06.2003
Бесконтактный способ измерения температуры полупроводников 1978
  • Кораблев Вадим Васильевич
  • Страковская Светлана Ефимовна
  • Станчиц Сергей Алексеевич
SU694774A1
CN 103674252 A, 26.03.2014.

RU 2 660 765 C1

Авторы

Косырев Николай Николаевич

Лященко Сергей Александрович

Шевцов Дмитрий Валентинович

Варнаков Сергей Николаевич

Яковлев Иван Александрович

Тарасов Иван Анатольевич

Заблуда Владимир Николаевич

Даты

2018-07-09Публикация

2017-02-14Подача