Изобретение относится к области аэрокосмической техники, в частности ракетно-космического двигателестроения. Одной из широко распространенных причин отказа жидкостных ракетных двигателей является прогар камеры, начало которого сопряжено с появлением множества заряженных твердых частиц в продуктах сгорания.
Из существующего уровня техники известен способ контроля вибрационного горения в камере сгорания газотурбинного двигателя [патент РФ 2618774, F23N 5/24, опубл. 11.05.2017], при котором оптическим методом регистрируется изменение частот электромагнитного излучения от горящей топливовоздушной смеси.
Недостатком аналога является низкая вероятность обнаружения твердых заряженных частиц, появляющихся в потоке продуктов сгорания при начале процесса разрушения, и сложность конструкции специального лючка для установки оптического объектива в стенке камеры ракетного двигателя.
Наиболее близким к заявленному техническому решению является способ контроля вибрационного горения в камере сгорания газотурбинного двигателя [патент РФ 2272923, F02C 9/00, опубл. 27.03.2006], который осуществляют путем регистрации изменения частот колебаний параметров газодинамического движения частиц в газе и определения наличия или отсутствия вибрационного горения, при этом регистрацию изменения параметров газодинамического движения производят электростатическими антеннами без контакта с двигателем и его газодинамической струей, фиксируют временную реализацию сигнала колебаний электростатического поля, определяют спектральную плотность в спектре мощности временной реализации этого сигнала, сравнивают с эталонным значением спектральной плотности и, в случае превышения определяемого параметра заданного эталонного значения, определяют частоту, за которой произошло превышение, сравнивают эту частоту со значениями частот вибрационного горения данной камеры сгорания и вырабатывают сигнал в систему контроля двигателя о наличии вибрационного горения.
Недостатками данного технического решения являются повышенные габариты электростатических антенн и трудности их использования применительно к конструкции ракетного двигателя.
Задачей изобретения является ранняя диагностика прогара элементов проточного тракта ракетного двигателя и предотвращение разрушения материальной части при испытаниях на стенде и эксплуатации.
Техническим результатом является обеспечение надежного обнаружения начала процесса разрушения камеры сгорания и сопла для предотвращения прогара указанных теплонапряженных элементов проточного тракта ракетного двигателя.
Поставленная задача решается, а технический результат достигается тем, что в способе бесконтактной ранней диагностики разгара камеры сгорания и сопла ракетного двигателя регистрируют изменение частот колебаний электромагнитных параметров газодинамического движения высокотемпературных продуктов сгорания, протекающих по камере сгорания и соплу, регистрацию осуществляют высокочувствительным датчиком магнитного поля, восприимчивым к появлению твердых частиц в газовом потоке, предшествующему разрушению, определяют спектральную плотность в спектре мощности реализации напряженности магнитного поля, сравнивают с эталонным значением спектральной плотности и, в случае превышения определяемого параметра заданного эталонного значения, определяют частоту, на которой произошло превышение, сравнивают эту частоту со значениями частот начала прогара для данной камеры и вырабатывают сигнал в систему аварийной защиты двигателя о начале прогара.
Сущность изобретения поясняется чертежами.
На фиг. 1 изображена структурная схема системы технической диагностики, реализующая способ при испытании жидкостного ракетного двигателя на стенде:
1 - датчик магнитного поля;
2 - модуль кондиционирования;
3 - преобразователь переменного магнитного поля индукционного типа;
4 - сопло;
5 - газогенератор;
6 - турбина;
7 - турбонасосный агрегат.
На фиг. 2 - частотный спектр сигнала магнитного датчика при появлении первых заряженных частиц металла в продуктах сгорания, что предшествует началу интенсивного разгара внутренней стенки камеры ракетного двигателя.
Заявляемый способ бесконтактной ранней диагностики разгара камеры сгорания и сопла ракетного двигателя осуществляют следующим образом.
Изменение частот колебаний параметров газодинамического движения частиц в струе регистрируют датчиками магнитного поля 1, сигнал от которых поступает на модуль кондиционирования 2, предназначенный для согласования с преобразователем переменного магнитного поля индукционного типа 3 и усиления принимаемых сигналов до уровней, достаточных для работы модулей оцифровки и ввода в персональный компьютер. Датчики магнитного поля устанавливаются согласно фиг. 1 на наружной стенке сопла 4 в области критического сечения двигателя или на участках трубопроводов от газогенератора 5 до турбины 6 турбонасосного агрегата 7, проводят статистический анализ зарегистрированных пульсаций напряженности (фиг. 2) собственного магнитного поля продуктов сгорания, содержащих ионы, свободные электроны и заряженные частицы металла, а именно проводят преобразование Фурье временной реализации зарегистрированного сигнала xi и получают амплитудный спектр Fi по формуле
где Fi - амплитудный спектр напряженности магнитного поля, регистрируемой датчиком магнитного поля;
N - количество точек выборки на интервале времени τ=1 с;
xi - значение сигнала напряженности магнитного поля.
Затем определяют спектральную плотность сигнала напряженности магнитного поля Gi в спектре мощности на частоте fi согласно выражению
где Gi - спектральная плотность сигнала напряженности магнитного поля;
fi - частота опроса, задаваемая аппаратно-программным комплексом.
Далее сравнивают спектральную плотность сигнала Gi с заданной эталонной величиной G0. В случае превышения Gi эталонной величины G0 проводится выделение частоты fi, соответствующей частоте начала прогара fпрог.
Применение заявляемого способа бесконтактной ранней диагностики разгара камеры ракетного двигателя по напряженности собственного магнитного поля продуктов сгорания позволит повысить эффективность и надежность системы технической диагностики и аварийной защиты по сравнению с системами, основанными на традиционных методах, повышая тем самым безопасность при испытаниях и летной эксплуатации ракетных двигателей.
Изобретение относится к области аэрокосмической техники, в частности ракетно-космического двигателестроения. Одной из широко распространенных причин отказа жидкостных ракетных двигателей является прогар камеры, начало которого сопряжено с появлением множества заряженных твердых частиц в продуктах сгорания. Технический результат: обеспечение надежного обнаружения начала процесса разрушения камеры сгорания и сопла для предотвращения прогара указанных теплонапряженных элементов проточного тракта ракетного двигателя. Изменения частот колебаний электромагнитных параметров газодинамического движения высокотемпературных продуктов сгорания, протекающих по камере сгорания и соплу, регистрируют высокочувствительным датчиком магнитного поля, восприимчивым к появлению твердых частиц в газовом потоке, предшествующему разрушению, определяют спектральную плотность в спектре мощности реализации этого сигнала, сравнивают с эталонным значением спектральной плотности и в случае превышения определяемого параметра заданного эталонного значения определяют частоту, на которой произошло превышение, сравнивают эту частоту со значениями частот начала прогара для данной камеры и вырабатывают сигнал в систему аварийной защиты двигателя о начале прогара. 2 ил.
Способ бесконтактной ранней диагностики разгара камеры ракетного двигателя по напряженности собственного магнитного поля продуктов сгорания, заключающийся в регистрации изменения частот колебаний параметров газодинамического движения частиц в газе и определении наличия или отсутствия начала прогара, отличающийся тем, что регистрацию изменения частот колебаний параметров газодинамического движения производят высокочувствительным датчиком магнитного поля, восприимчивым к появлению твердых частиц в газовом потоке, предшествующему разрушению, определяют спектральную плотность в спектре мощности временной реализации этого сигнала, сравнивают с эталонным значением спектральной плотности и в случае превышения определяемого параметра заданного эталонного значения определяют частоту, на которой произошло превышение, сравнивают эту частоту со значениями частот начала прогара для данной камеры и вырабатывают сигнал в систему аварийной защиты двигателя о начале прогара.
СПОСОБ КОНТРОЛЯ ВИБРАЦИОННОГО ГОРЕНИЯ В КАМЕРЕ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2004 |
|
RU2272923C1 |
СПОСОБ КОНТРОЛЯ ВИБРАЦИОННОГО ГОРЕНИЯ В КАМЕРЕ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2016 |
|
RU2618774C1 |
SIMON GROSS, CHRISTOPH BARMET, BENJAMIN E | |||
DIETRICH, DAVID O | |||
BRUNNER, THOMAS SCHMID, KLAAS P | |||
PRUESSMANN | |||
DYNAMIC NUCLEAR MAGNETIC RESONANCE FIELD SENSING WITH PART-PER-TRILLION RESOLUTION | |||
Nature Communications, 2016 | |||
ИЧКИТИДЗЕ Л | |||
П., БАЗАЕВ Н | |||
А., ТЕЛЫШЕВ Д | |||
В., ПРЕОБРАЖЕНСКИЙ Р | |||
Ю., ГАВРЮШИНА М | |||
Л | |||
// ДАТЧИКИ МАГНИТНОГО ПОЛЯ В МЕДИЦИНСКОЙ ДИАГНОСТИКЕ // Медицинская техника | |||
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
c | |||
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора | 1921 |
|
SU19A1 |
US 4587614 A1, 06.05.1986. |
Авторы
Даты
2018-08-03—Публикация
2017-10-05—Подача