Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабжения с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоты грунтового массива.
Известна полезная модель по патенту РФ RU 149505 U1, представляющая отопительную теплонасосную систему с грунтовым теплообменником из нескольких секций, подключающихся поочередно в зависимости от температуры теплоносителя в секции, для чего каждая секция снабжена датчиком температуры и электромагнитным клапаном, работающим в режиме «отрыт-закрыт». Датчики температуры и электромагнитные клапаны соединены с устройством переключения, подающим сигнал на открытие клапана одной из секций при достаточно высокой температуре теплоносителя. При снижении температуры теплоносителя в этой секции ниже установленного предела устройство переключения дает команду на закрытие электромагнитного клапана, что приводит к отключению данной секции, и подключает следующую секцию и так далее.
Недостатком такого технического решения является то, что, согласно описанию режимов работы, применен электромагнитный клапан, работающий в режиме «отрыт-закрыт», и секции грунтового теплообменника подключаются последовательно, причем в каждый отдельный момент работает только одна из секций, что приводит к неравномерности температуры и нежелательным перетокам грунтовой теплоты в грунтовом массиве.
Кроме того, отключенные секции находятся в состоянии простоя, что требует увеличения теплообменной поверхности каждой работающей секции до величины, соответствующей тепловой мощности испарителя теплового насоса, и соответствующего увеличения капитальных вложений.
Предлагается способ управления геотермальной теплонасосной системой, в частности системой сбора низкопотенциального тепла грунта, состоящей из отдельных зон, путем воздействия на состояние работы каждой зоны по показаниям датчика температуры теплоносителя с помощью электроуправляемого регулирующего клапана, изменяющего расход теплоносителя через каждую зону так, чтобы поддерживать одинаковую установленную температуру на выходе из каждой зоны. Это позволяет обеспечить параллельную работу зон без создания нежелательного градиента температур в грунтовом массиве. Параллельная работа зон позволяет задействовать всю теплообменную поверхность грунтового теплообменника.
Кроме того, в случае применения большого количества известных и получающих широкое распространение вертикальных грунтовых теплообменников, устанавливаемых в буровую скважину (термоскважин), в пределах каждой зоны термоскважины соединены с геотермальным колодцем, который, в свою очередь, соединен с испарителем теплового насоса прямым и обратным трубопроводами, в которых установлены датчик температуры и электроуправляемый регулирующий клапан соответственно. Такое решение позволяет сократить число датчиков и клапанов.
Предлагается также устройство для реализации упомянутого способа, приведенное на фиг. 1.
Грунтовые теплообменники 1 каждой зоны подключены к геотермальным колодцам 2 прямым и обратным трубопроводами, где они объединяются сборными коллекторами, от которых прямой и обратный трубопроводы введены в теплонасосный тепловой пункт 3 и подключены к гребенкам прямых 4 и обратных 5 трубопроводов, в свою очередь, соединенных с испарителем теплового насоса 6. В каждом трубопроводе от испарителя к геотермальным колодцам установлен электроуправляемый регулирующий клапан 7, а в каждом к испарителю - датчик температуры теплоносителя 8. Электроуправляемые регулирующие клапаны и датчики температуры подключены к контроллеру 9.
Все элементы автоматики могут быть расположены в отапливаемом помещении теплонасосного теплового пункта, что повышает надежность ее работы.
Устройство работает следующим образом. По мере истощения теплового ресурса той или иной части грунтового массива соответствующий датчик температуры 8 регистрирует снижение температуры теплоносителя в потоке из соответствующей зоны и передает информацию в контроллер 9, который, в свою очередь, выдает команду на прикрытие соответствующего электроуправляемого регулирующего клапана 7. Расход теплоносителя снижается, температура обратного потока повышается до заданной уставки. В процессе естественной регенерации теплоты в рассматриваемой части грунтового массива температура теплоносителя повышается сверх заданной уставки, датчик температуры 8 передает информацию в контроллер 9, который выдает команду на приоткрытие соответствующего электроуправляемого регулирующего клапана 7, что приводит к увеличению расхода теплоносителя и поддержанию температуры теплоносителя в заданных пределах.
Таким образом, все зоны грунтовых теплообменников и, следовательно, вся теплообменная поверхность, постоянно находятся в работе, не вызывая при этом температурных «перекосов» в грунтовом массиве.
название | год | авторы | номер документа |
---|---|---|---|
ГЕОТЕРМАЛЬНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА | 2015 |
|
RU2591362C1 |
Теплонасосная система отопления и горячего водоснабжения помещений | 2017 |
|
RU2657209C1 |
СПОСОБ УПРАВЛЕНИЯ И УСТРОЙСТВО ГРУНТОВОГО ТЕПЛООБМЕННИКА | 2016 |
|
RU2647263C2 |
АДАПТИВНАЯ ГИБРИДНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2016 |
|
RU2647606C2 |
СПОСОБ УПРАВЛЕНИЯ ГЕОТЕРМАЛЬНОЙ ТЕПЛОНАСОСНОЙ СИСТЕМОЙ ТЕПЛОХЛАДОСНАБЖЕНИЯ ЗДАНИЯ | 2018 |
|
RU2705016C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА | 2012 |
|
RU2499197C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА | 2015 |
|
RU2615678C2 |
ГЕОТЕРМАЛЬНЫЙ ТЕПЛОВОЙ НАСОС | 2023 |
|
RU2818610C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА | 2009 |
|
RU2416761C1 |
Теплонасосная установка для отопления и горячего водоснабжения | 2018 |
|
RU2679484C1 |
Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабжения с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоты грунтового массива. Способ регулирования геотермальной теплонасосной системы, содержащей систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более герметичных грунтовых теплообменников, причем способ подключения зон осуществляется в зависимости от теплового состояния участка грунтового массива соответствующей зоны. Все зоны системы сбора низкопотенциального тепла грунта работают параллельно, а регулирование режима работы каждой зоны грунтовых теплообменников осуществляется путем изменения расхода теплоносителя в зависимости от его температуры. Трубопроводы теплоносителя от грунтовых теплообменников каждой из зон выведены в один геотермальный колодец и объединены сборными коллекторами, а колодец каждой зоны соединен с испарителем теплового насоса прямым и обратным трубопроводами, причем в прямом трубопроводе установлен датчик температуры, а в обратном - электроуправляемый регулирующий клапан, а оба соединены с управляющим контроллером. Это позволяет обеспечить параллельную работу зон без создания нежелательного градиента температур в грунтовом массиве. Параллельная работа зон позволяет задействовать всю теплообменную поверхность грунтового теплообменника. 2 н.п. ф-лы, 1 ил.
1. Способ регулирования геотермальной теплонасосной системы, содержащей систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более герметичных грунтовых теплообменников, причем способ подключения зон осуществляется в зависимости от теплового состояния участка грунтового массива соответствующей зоны, отличающийся тем, что все зоны системы сбора низкопотенциального тепла грунта работают параллельно, а регулирование режима работы каждой зоны грунтовых теплообменников осуществляется путем изменения расхода теплоносителя в зависимости от его температуры.
2. Устройство для осуществления способа по п. 1, содержащее теплонасосное оборудование, установленное в теплонасосном тепловом пункте, систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, включающих более одного грунтового теплообменника, отличающееся тем, что трубопроводы теплоносителя от грунтовых теплообменников каждой из зон выведены в один геотермальный колодец и объединены сборными коллекторами, а колодец каждой зоны соединен с испарителем теплового насоса прямым и обратным трубопроводами, причем в прямом трубопроводе установлен датчик температуры, а в обратном - электроуправляемый регулирующий клапан, а оба соединены с управляющим контроллером.
Способ определения отсутствия контакта в полупроводниковых диодах | 1960 |
|
SU149505A1 |
Расходомер | 1948 |
|
SU75670A1 |
CN 101363677 A, 11.02.2009 | |||
WO 2011136435 A1, 03.11.2011 | |||
KR 101569316 B1, 13.11.2015 | |||
CN 101750970 A, 23.06.2010 | |||
CN 204574340 U, 19.08.2015 | |||
CN 101907373 A, 08.12.2010 | |||
US 8346679 B2, 01.01.2013 | |||
Раздвижной патрон для крашения, беления и тому подобной обработки пряжи в бобинах | 1939 |
|
SU56415A1 |
Водоотбойное устройство цилиндрической щетки вагономоечной машины | 1961 |
|
SU140455A1 |
СПОСОБ ПОСЕЗОННОГО ИСПОЛЬЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА И СКВАЖИННЫЕ ТЕПЛООБМЕННИКИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ВАРИАНТОВ СПОСОБА | 2011 |
|
RU2483255C1 |
Флюс для шланговой автоматической и полуавтоматической сварки | 1951 |
|
SU93942A1 |
US 5509462 A1, 23.04.1996 | |||
CN 203615453 U, 28.05.2014. |
Авторы
Даты
2018-08-15—Публикация
2016-04-19—Подача