СПОСОБ РЕГУЛИРОВАНИЯ ГЕОТЕРМАЛЬНОЙ ТЕПЛОНАСОСНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2018 года по МПК F24D11/02 

Описание патента на изобретение RU2664276C2

Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабжения с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоты грунтового массива.

Известна полезная модель по патенту РФ RU 149505 U1, представляющая отопительную теплонасосную систему с грунтовым теплообменником из нескольких секций, подключающихся поочередно в зависимости от температуры теплоносителя в секции, для чего каждая секция снабжена датчиком температуры и электромагнитным клапаном, работающим в режиме «отрыт-закрыт». Датчики температуры и электромагнитные клапаны соединены с устройством переключения, подающим сигнал на открытие клапана одной из секций при достаточно высокой температуре теплоносителя. При снижении температуры теплоносителя в этой секции ниже установленного предела устройство переключения дает команду на закрытие электромагнитного клапана, что приводит к отключению данной секции, и подключает следующую секцию и так далее.

Недостатком такого технического решения является то, что, согласно описанию режимов работы, применен электромагнитный клапан, работающий в режиме «отрыт-закрыт», и секции грунтового теплообменника подключаются последовательно, причем в каждый отдельный момент работает только одна из секций, что приводит к неравномерности температуры и нежелательным перетокам грунтовой теплоты в грунтовом массиве.

Кроме того, отключенные секции находятся в состоянии простоя, что требует увеличения теплообменной поверхности каждой работающей секции до величины, соответствующей тепловой мощности испарителя теплового насоса, и соответствующего увеличения капитальных вложений.

Предлагается способ управления геотермальной теплонасосной системой, в частности системой сбора низкопотенциального тепла грунта, состоящей из отдельных зон, путем воздействия на состояние работы каждой зоны по показаниям датчика температуры теплоносителя с помощью электроуправляемого регулирующего клапана, изменяющего расход теплоносителя через каждую зону так, чтобы поддерживать одинаковую установленную температуру на выходе из каждой зоны. Это позволяет обеспечить параллельную работу зон без создания нежелательного градиента температур в грунтовом массиве. Параллельная работа зон позволяет задействовать всю теплообменную поверхность грунтового теплообменника.

Кроме того, в случае применения большого количества известных и получающих широкое распространение вертикальных грунтовых теплообменников, устанавливаемых в буровую скважину (термоскважин), в пределах каждой зоны термоскважины соединены с геотермальным колодцем, который, в свою очередь, соединен с испарителем теплового насоса прямым и обратным трубопроводами, в которых установлены датчик температуры и электроуправляемый регулирующий клапан соответственно. Такое решение позволяет сократить число датчиков и клапанов.

Предлагается также устройство для реализации упомянутого способа, приведенное на фиг. 1.

Грунтовые теплообменники 1 каждой зоны подключены к геотермальным колодцам 2 прямым и обратным трубопроводами, где они объединяются сборными коллекторами, от которых прямой и обратный трубопроводы введены в теплонасосный тепловой пункт 3 и подключены к гребенкам прямых 4 и обратных 5 трубопроводов, в свою очередь, соединенных с испарителем теплового насоса 6. В каждом трубопроводе от испарителя к геотермальным колодцам установлен электроуправляемый регулирующий клапан 7, а в каждом к испарителю - датчик температуры теплоносителя 8. Электроуправляемые регулирующие клапаны и датчики температуры подключены к контроллеру 9.

Все элементы автоматики могут быть расположены в отапливаемом помещении теплонасосного теплового пункта, что повышает надежность ее работы.

Устройство работает следующим образом. По мере истощения теплового ресурса той или иной части грунтового массива соответствующий датчик температуры 8 регистрирует снижение температуры теплоносителя в потоке из соответствующей зоны и передает информацию в контроллер 9, который, в свою очередь, выдает команду на прикрытие соответствующего электроуправляемого регулирующего клапана 7. Расход теплоносителя снижается, температура обратного потока повышается до заданной уставки. В процессе естественной регенерации теплоты в рассматриваемой части грунтового массива температура теплоносителя повышается сверх заданной уставки, датчик температуры 8 передает информацию в контроллер 9, который выдает команду на приоткрытие соответствующего электроуправляемого регулирующего клапана 7, что приводит к увеличению расхода теплоносителя и поддержанию температуры теплоносителя в заданных пределах.

Таким образом, все зоны грунтовых теплообменников и, следовательно, вся теплообменная поверхность, постоянно находятся в работе, не вызывая при этом температурных «перекосов» в грунтовом массиве.

Похожие патенты RU2664276C2

название год авторы номер документа
ГЕОТЕРМАЛЬНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА 2015
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
  • Филиппов Михаил Дмитриевич
  • Гришина Анастасия Александровна
RU2591362C1
Теплонасосная система отопления и горячего водоснабжения помещений 2017
  • Сучилин Владимир Алексеевич
  • Кочетков Алексей Сергеевич
  • Губанов Николай Николаевич
RU2657209C1
СПОСОБ УПРАВЛЕНИЯ И УСТРОЙСТВО ГРУНТОВОГО ТЕПЛООБМЕННИКА 2016
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
  • Лесков Виталий Александрович
  • Гришина Анастасия Александровна
  • Васильева Ирина Аркадьевна
RU2647263C2
АДАПТИВНАЯ ГИБРИДНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ 2016
  • Бурмистров Алексей Александрович
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
  • Силаева Виктория Григорьевна
  • Шапкин Павел Владимирович
RU2647606C2
СПОСОБ УПРАВЛЕНИЯ ГЕОТЕРМАЛЬНОЙ ТЕПЛОНАСОСНОЙ СИСТЕМОЙ ТЕПЛОХЛАДОСНАБЖЕНИЯ ЗДАНИЯ 2018
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
  • Шапкин Павел Владимирович
RU2705016C1
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА 2012
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
  • Бурмистров Алексей Александрович
  • Лесков Виталий Александрович
  • Шапкин Павел Владимирович
  • Колесова Марина Владимировна
RU2499197C1
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА 2015
  • Федянин Виктор Яковлевич
  • Котельников Валерий Ильич
  • Шарипов Нурмухаммад Бободжонович
RU2615678C2
ГЕОТЕРМАЛЬНЫЙ ТЕПЛОВОЙ НАСОС 2023
  • Венгин Юрий Сергеевич
  • Венгин Николай Алексеевич
RU2818610C1
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА 2009
  • Васильев Григорий Петрович
  • Горнов Виктор Федорович
RU2416761C1
Теплонасосная установка для отопления и горячего водоснабжения 2018
  • Сучилин Владимир Алексеевич
  • Красновский Сергей Владимирович
  • Зак Игорь Борисович
RU2679484C1

Иллюстрации к изобретению RU 2 664 276 C2

Реферат патента 2018 года СПОСОБ РЕГУЛИРОВАНИЯ ГЕОТЕРМАЛЬНОЙ ТЕПЛОНАСОСНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабжения с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоты грунтового массива. Способ регулирования геотермальной теплонасосной системы, содержащей систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более герметичных грунтовых теплообменников, причем способ подключения зон осуществляется в зависимости от теплового состояния участка грунтового массива соответствующей зоны. Все зоны системы сбора низкопотенциального тепла грунта работают параллельно, а регулирование режима работы каждой зоны грунтовых теплообменников осуществляется путем изменения расхода теплоносителя в зависимости от его температуры. Трубопроводы теплоносителя от грунтовых теплообменников каждой из зон выведены в один геотермальный колодец и объединены сборными коллекторами, а колодец каждой зоны соединен с испарителем теплового насоса прямым и обратным трубопроводами, причем в прямом трубопроводе установлен датчик температуры, а в обратном - электроуправляемый регулирующий клапан, а оба соединены с управляющим контроллером. Это позволяет обеспечить параллельную работу зон без создания нежелательного градиента температур в грунтовом массиве. Параллельная работа зон позволяет задействовать всю теплообменную поверхность грунтового теплообменника. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 664 276 C2

1. Способ регулирования геотермальной теплонасосной системы, содержащей систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более герметичных грунтовых теплообменников, причем способ подключения зон осуществляется в зависимости от теплового состояния участка грунтового массива соответствующей зоны, отличающийся тем, что все зоны системы сбора низкопотенциального тепла грунта работают параллельно, а регулирование режима работы каждой зоны грунтовых теплообменников осуществляется путем изменения расхода теплоносителя в зависимости от его температуры.

2. Устройство для осуществления способа по п. 1, содержащее теплонасосное оборудование, установленное в теплонасосном тепловом пункте, систему сбора низкопотенциального тепла грунта, состоящую из двух и более зон, включающих более одного грунтового теплообменника, отличающееся тем, что трубопроводы теплоносителя от грунтовых теплообменников каждой из зон выведены в один геотермальный колодец и объединены сборными коллекторами, а колодец каждой зоны соединен с испарителем теплового насоса прямым и обратным трубопроводами, причем в прямом трубопроводе установлен датчик температуры, а в обратном - электроуправляемый регулирующий клапан, а оба соединены с управляющим контроллером.

Документы, цитированные в отчете о поиске Патент 2018 года RU2664276C2

Способ определения отсутствия контакта в полупроводниковых диодах 1960
  • Кричевский М.Э.
SU149505A1
Расходомер 1948
  • Стариков Ф.Ф.
SU75670A1
CN 101363677 A, 11.02.2009
WO 2011136435 A1, 03.11.2011
KR 101569316 B1, 13.11.2015
CN 101750970 A, 23.06.2010
CN 204574340 U, 19.08.2015
CN 101907373 A, 08.12.2010
US 8346679 B2, 01.01.2013
Раздвижной патрон для крашения, беления и тому подобной обработки пряжи в бобинах 1939
  • Сушевский Г.Б.
SU56415A1
Водоотбойное устройство цилиндрической щетки вагономоечной машины 1961
  • Фастовский П.Б.
  • Чекмарев Н.М.
  • Юрьев А.Ф.
SU140455A1
СПОСОБ ПОСЕЗОННОГО ИСПОЛЬЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА И СКВАЖИННЫЕ ТЕПЛООБМЕННИКИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ВАРИАНТОВ СПОСОБА 2011
  • Калинин Михаил Иванович
  • Горбачев Валерий Иванович
  • Шахназаров Сергей Глебович
  • Калинина Жанна Георгиевна
RU2483255C1
Флюс для шланговой автоматической и полуавтоматической сварки 1951
  • Отдел Сварки Центрального Научно-Исследовательского Института Технологии Машиностроения
SU93942A1
US 5509462 A1, 23.04.1996
CN 203615453 U, 28.05.2014.

RU 2 664 276 C2

Авторы

Васильев Григорий Петрович

Горнов Виктор Федорович

Абуев Игорь Михайлович

Бурмистров Алексей Александрович

Даты

2018-08-15Публикация

2016-04-19Подача