СПОСОБ ПЫЛЕУЛАВЛИВАНИЯ С ПОМОЩЬЮ ЛАЗЕРНОЙ УСТАНОВКИ Российский патент 2018 года по МПК B03C11/00 

Описание патента на изобретение RU2665583C1

Изобретение относится к области пылеулавливания с помощью осадительных электродов в электростатическом поле, создаваемым лазерным излучением и может использоваться в различных отраслях промышленности, а также в экологических процессах очистки атмосферы при вулканических извержениях пепла и золы.

Известна конструкция пластинчатого электрофильтра, включающая корпус с входным и выходным газоходами, между которыми установлены пластинчатые осадительные электроды в виде гладких металлических листов или натянутых на рамы сеток, между которыми подвешены коронирующие электроды, выполненные из отрезков проволоки (аналог). Машины и аппараты химических производств. Издание третье, переработанное и дополненное. Под редакцией И.И. Чернобыльского. - М.: Машиностроение. 1975. 451 с., с. 11-12. Недостатком этого способа является значительные затраты электроэнергии для создания устойчивого коронного разряда между коронирующими и осадительными электродами, что приводит к повышенной стоимости очистки газов от дисперсной фазы, особенно при изменениях расхода газа.

Известен электрофильтр для очистки потока газа от пыли, включающий корпус с входным и выходным патрубками, осадительные электроды, элементы которых расположены поперек газового потока у входного патрубка и вдоль в основной части корпуса, и коронирующие электроды, расположенные между рядами осадительных электродов, при этом свободное сечение в рядах элементов осадительных электродов, расположенных поперек газового потока, составляет 30-60% (аналог). Авт. св. СССР 629981, B01D 35/06, В01С 3/09, электрофильтр, 1978. Недостатком этого способа является сложность конструкции электродов, элементы которых расположены поперек газового потока у входного патрубка, и значительные затраты электроэнергии для создания устойчивого коронного разряда между коронирующими и осадительными электродами, что приводит к повышению стоимости очистки газов от пыли при изменениях расхода газа.

Наиболее близким техническим решением, выбранным за прототип, является электрофильтр, состоящий из корпуса, осадительных и коронирующих электродов, образующих несколько электрополей, входного и выходного газоходов, бункеров и источников высокого напряжения, при этом один или несколько осадительных электродов имеют вырезы, плоскости которых снабжены установленными на изоляторах пластинами, заземленными через рамки измерительных приборов, и установлены в начале и конце электрофильтра (авт. св. СССР 1212490, B01D 35/06, В03С 3/09, электрофильтр, 1984). Недостатком этого способа является повышенные затраты электроэнергии из-за необходимости создания устойчивого коронного разряда между коронирующими и осадительными электродами в каждом электрополе, что приводит к увеличению стоимости очистки газов от пыли, особенно при изменении расхода газа.

Техническим результатом предлагаемого способа является экономически целесообразная очистка больших объемов газов. При интенсивности лазерного импульса 1015-1016 Вт/см2 напряженность электрического поля в нем достигает значений, сравнимых с внутриатомными полями, поэтому любое вещество при облучении такими импульсами мгновенно ионизуется и переходит в состояние плазмы. Энергия лазерного излучения достаточно эффективно трансформируется в энергию заряженных частиц. Перезаряженные частицы пыли определенной полярности, например, положительной притягиваются и осаждаются на осадительных электродах противоположной полярности. На поверхности осадительных электродов улавливается основная масса пыли, содержащейся в газах. Требования к осадительным электродам можно сформулировать следующим образом:

- создание конструкций, обеспечивающих максимальную поверхность осаждения для пылевых частиц.

Техническим результатом является то, что предложен новый способ перезаряжания частиц пыли лазерным излучением.

На фиг. 1 изображена схема лазерного электрофильтра; на фиг. 2 - схема пылеулавливания на открытых горных работах с помощью надувных емкостей и лазера; на фиг. 3 - схема пылеулавливания на открытых горных работах с помощью беспилотников и лазера; на фиг. 4 - схема пылеулавнивания при вулканических извержениях с помощью беспилотников и лазера.

Кроме этого достигается снижение расхода электроэнергии за счет использования распределения лазерного луча в виде пучка для многократной обработки больших объемов загрязненных газов. Для этой цели используются различные технические решения, позволяющие распределять энергию лазерного излучения по всему объему очищаемого газа, например, вращающимся шаром с укрепленными на нем разнонаправленными зеркальными поверхностями.

Поставленный технический результат при пылеулавливании в закрытых объемах достигается тем, что в существующем электрофильтре, состоящем из корпуса 1 и осадительных электродов 2 устанавливается лазер 3 с устройством распределения лазерного луча 4 в виде пучка для многократной обработки проходящих, например, дымовых газов. Процесс очистки газов в лазерных электрофильтрах протекает следующим образом: дымовые газы, содержащие взвешенные частички золы, равномерным потоком проходят через электрическое поле высокой напряженности, которое создается пучком лазерного излучения и осадительными электродами. К одному из полюсов, например, отрицательному полюсу выпрямителя 6 присоединяются осадительные электроды. При подаче на осадительные электроды тока высокого напряжения в лазерном электрофильтре возникает электрическое поле, напряженность которого нарастает при включении в работу непосредственно лазерной установки. В обработанной лазерным пучком зоне происходит ионизация газа с образованием большого количества ионов и электронов. Положительные ионы мгновенно достигают и осаждаются на осадительных электродах, а отрицательные ионы и электроны, двигаясь под действием электрического поля и участвуя в беспорядочном тепловом движении газовых молекул, сталкиваются со взвешенными в газе частицами золы, адсорбируются ими, в результате чего частицы золы, приобретают электрический заряд определенной полярности, например, положительный и также осаждаются на осадительных электродах. Для очистки поверхностей электродов от золы используются механизмы встряхивания различного типа. Зола ссыпается в сборные бункеры 5, откуда удаляется при помощи аппаратов гидрозолоудаления (фиг. 1).

При пылеулавливании в полуоткрытых объемах, например, на открытых горных работах после проведения взрывных работ воздушное пространство карьера со взметанной пылью предварительно ионизируется предлагаемой лазерной установкой 1 с устройством распределения лазерного луча в виде пучка 2. По п. 1 одновременно в этот объем воздуха вводится необходимое количество надувных емкостей 3 большого объема, изготовленных из легкополяризуемого эластичного материала. Эластичный материал емкостей в процессе накачки воздухом электризуется, например, положительным зарядом и притягивает на свою поверхность перезаряженные частицы пыли с отрицательным зарядом (фиг. 2).

По п. 2 одновременно в эту зону вводятся достаточное количество беспилотников 3 с осадительными поверхностями 4 (электродами), имеющими определенную полярность, например, положительную. Перезаряженные частицы пыли, например, отрицательным зарядом мгновенно осаждаются на положительно заряженные поверхности (электроды) беспилотников, которые барражируют в зоне карьера, и таким образом происходит процесс пылеулавливания (фиг. 3).

При вулканических извержениях большие объемы воздуха с газами и пеплом ионизируются предлагаемыми лазерными установками 1 с устройствами распределения лазерного луча 2 в виде пучка и одновременно в эту зону вводится достаточное количество беспилотников 3 с осадительными поверхностями 4 (электродами), имеющими определенную полярность, например, положительную. Перезаряженные частицы пепла, например, отрицательным зарядом мгновенно осаждаются на положительно заряженные поверхности (электродов) беспилотников, которые барражируют в зоне вулкана, и таким образом происходит процесс улавливания вулканического или иного пепла и золы (фиг. 4).

Похожие патенты RU2665583C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ПЫЛИ И ЭЛЕКТРОФИЛЬТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Пикулик Николай Всеволодович
  • Чекалов Лев Валентинович
  • Санаев Юрий Иванович
  • Гузаев Виталий Александрович
RU2636488C2
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ПЫЛИ И ЭЛЕКТРОФИЛЬТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Чистяков Ю.Л.
RU2122472C1
Способ очистки газа 1980
  • Швидкий Николай Иванович
  • Прохорова Наталья Юрьевна
SU963565A1
СПОСОБ УЛАВЛИВАНИЯ КАПЕЛЬНОГО АЭРОЗОЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Кущев Л.А.
  • Карпман В.Б.
  • Минко В.А.
  • Анфалов М.В.
  • Шаптала В.Г.
  • Окунева Г.Л.
  • Лапин О.Ф.
  • Майоров С.П.
RU2233695C1
Способ управления работой электрофильтра 1980
  • Кройтор Дмитрий Семенович
  • Кравец Жорж Рефулович
SU919747A1
ЭЛЕКТРОФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ 1991
  • Кирпичников Геннадий Александрович
RU2008099C1
ЭЛЕКТРОФИЛЬТР 1998
  • Чистяков Ю.Л.
RU2137551C1
Электрофильтр 1983
  • Мелиди Георгий Евстафьевич
  • Ереметов Владимир Александрович
  • Шумов Анатолий Герасимович
  • Николенко Александр Владимирович
  • Локотко Геннадий Вениаминович
SU1099985A2
Электрофильтр 1981
  • Пономарев Петр Тимофеевич
  • Мелиди Георгий Евстафьевич
  • Федоров Владимир Федотович
  • Кипервассер Вениамин Михайлович
  • Овсянников Юрий Георгиевич
SU1037964A1
Электрофильтр 1983
  • Мелиди Георгий Евстафьевич
  • Федоров Владимир Федотович
  • Духович Николай Тимофеевич
  • Логунова Людмила Георгиевна
  • Маев Иван Егорович
SU1127635A1

Иллюстрации к изобретению RU 2 665 583 C1

Реферат патента 2018 года СПОСОБ ПЫЛЕУЛАВЛИВАНИЯ С ПОМОЩЬЮ ЛАЗЕРНОЙ УСТАНОВКИ

Изобретение относится к очистке газов в различных отраслях промышленности и в окружающей среде для пылеулавливания и пылеподавления. При осуществлении способа используют лазер и распределитель лазерного излучения в виде пучка луча с интенсивностью импульса 1015-1016 Вт/см2, образующий область ионизации высокой напряженности для предварительной многократной обработки больших объемов пылевоздушных потоков. Используют осадительные поверхности: в закрытых объемах в виде стационарных электродов, имеющих противоположную полярность создающей ионизацию лазерной установки; на открытых воздушных пространствах карьеров в виде вводимых в воздушное пространство надувных емкостей, изготовленных из легкополяризуемых эластичных диэлектрических материалов или в виде электродов определенной полярности, установленных на беспилотниках; при вулканических извержениях - в виде электродов определенной полярности, установленных на беспилотниках. Повышается эффективность очистки, снижаются энергетические затраты. 4 ил.

Формула изобретения RU 2 665 583 C1

Способ пылеулавливания лазерным излучением включает лазер и распределитель лазерного излучения в виде пучка луча с интенсивностью импульса 1015-1016 Вт/см2, образующий область ионизации высокой напряженности для предварительной многократной обработки больших объемов пылевоздушных потоков, при том данное устройство имеет различное выполнение для обработки пылевоздушных потоков в закрытых объемах (стационарных пылеочистных установках), на открытых воздушных пространствах карьеров при взрывах и очистке атмосферы от пыли и газа при вулканических извержениях, и отличается тем, что используются осадительные поверхности: в закрытых объемах в виде стационарных электродов, имеющих противоположную полярность создающей ионизацию лазерной установки; на открытых воздушных пространствах карьеров в виде вводимых в воздушное пространство надувных емкостей, изготовленных из легкополяризуемых эластичных диэлектрических материалов или в виде электродов определенной полярности, установленных на беспилотниках; при вулканических извержениях - в виде электродов определенной полярности, установленных на беспилотниках.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665583C1

АППАРАТ ДЛЯ РАЗДЕЛЕНИЯ ГАЗА 1999
  • Голованчиков А.Б.
  • Ильин А.В.
  • Мамедова А.А.
  • Дулькина Н.А.
  • Корниенко Е.Н.
RU2160625C1
ГАЗОВЫЙ ЛАЗЕР 2000
  • Атежев В.В.
  • Вартапетов С.К.
  • Жигалкин А.К.
RU2173923C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБЕСПЫЛИВАНИЯ ТАБЛЕТОК ЯДЕРНОГО ТОПЛИВА ПОСРЕДСТВОМ ЛАЗЕРНОГО ЛУЧА 1997
  • Пикко Бернар
  • Маршан Мишель
RU2175150C2
СПОСОБ СНИЖЕНИЯ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ ВУЛКАНА НА ОКРУЖАЮЩУЮ СРЕДУ ПРИ ЕГО ИЗВЕРЖЕНИИ 2012
  • Перфилов Александр Александрович
RU2495185C1
JP 2010099544 A, 21.10.2008.

RU 2 665 583 C1

Авторы

Турсунов Нурбек Жумабекович

Турсунова Бану Нурбековна

Унайбаев Булат Жарылгапович

Турсунов Мейрам Жумабекович

Курмангалиева Кымбат Рахметуллаевна

Кузин Евгений Геннадьевич

Кулай Светлана Владимировна

Даты

2018-08-31Публикация

2017-03-17Подача